
Proceedings of the 9th Workshop on Constraint Grammar and Finite State NLP, pages 19–27
March 5, 2025 ©2025 University of Tartu Library

Drawing Blue Lines – What can Constraint Grammar do for GEC?

Linda Wiechetek
Divvun/ UiT Norgga árktalaš universitehta
firstname.lastname@uit.no

Kevin Brubeck Unhammer
Trigram AS

firstname@trigram.no

Abstract

This paper presents the application of
rule-based methods for Grammatical Er-
ror Correction (GEC) across multiple low-
resource languages. We describe new
functionality using the Constraint Gram-
mar (CG) formalism, designed for de-
tecting and correcting different types of
complex grammatical errors in a range
of morphologically complex languages.
These errors require transformations such
as reordering, word additions/deletions,
and alternative choices for multiword sug-
gestions. New perspectives are gained
from end-to-end-testing – this work aims
to clarify the relationship between the
command-line interface used by develop-
ers and the user interfaces of our grammar
checker plug-in for common word pro-
cessors. We present challenges and so-
lutions in correcting complex errors, with
examples from languages like Lule Sámi,
Irish, and Greenlandic, enabling linguists
to adapt these methods in order to pro-
vide accurate and context-aware proofing
tools for their own languages in main-
stream word processors like Microsoft
Word, Google Docs or LibreOffice.

1 Introduction

This work builds on Fred Karlsson’s introduction
to CG / Constraint Grammar (Karlsson, 1990b)
(CG2), Eckhard Bick’s higher doctoral disserta-
tion (Bick, 2000) and Tino Didriksen’s user man-
ual for VISL CG3 (Didriksen, 2010). Those de-
scriptions focus mainly on the use of the com-
mand line. However, things can look very differ-
ent in popular word processing programs, where
sentences are not displayed from top to bottom

with each word’s analysis. As programmers, the
command line is our daily workplace and when
things work we can easily forget that this is not
the place where most writers see their texts dis-
played. The purpose of this article is to implement
and describe how complex errors can be marked
and displayed in text processing programs in a way
that will be intuitive, useful and pedagogical to the
writer. We will focus on proofing tool applications
which are commonly used by writers, in particu-
lar grammar checkers that are substantially more
complex than spellcheckers, not only from a lin-
guistic, but also a technical point of view. The blue
lines in MS Word typically stretch over more than
one word, sometimes the whole sentence. Cor-
rection suggestions can include not only different
spellings, but entirely different constructions. We
also need ways to display correction feedback and
possibilities to refer to all parts of the error in the
text shown to the user.

Figure 1 illustrates how the Divvun1 grammar
checker works in MS Word. The text itself re-
ceives red lines for default English spellchecking,
which any user of non-English text needs to turn
off. The relevant grammar checking takes place in
the right-hand side-bar since Microsoft does not
let third-party software show feedback inside the
document, even though they do not provide any
alternative for e.g. Sámi speakers. Therefore the
blue lines marking simple or – in this case – com-
plex grammatical errors are found to the right of
the document.

This article shows different types of complex er-
rors in a number of languages, along with tech-
nical solutions within the CG-formalism, most of
which came into being as a result of working with
grammar checking. We aim to give a thorough
description so that the full potential of it can be
used by whoever would like to model a correction

1https://divvun.no/

19

Figure 1: Divvun Grammar checking in MS Word

Figure 2: Divvun Grammar checking from the developer’s perspective on the command line

grammar of their language.2

2 Motivation

In our work with grammatical errors, we found
that our formalism lacked certain functionalities
required for error detection and correction. One of
them was handling multiple possible corrections
of a complex error, where we have to be careful
that corrections are consistent, e.g. *as the tree
grow could be corrected to as the trees grow or as
the tree grows but not *as the trees grows. We also
need to be able to reorder, add or delete words.

A large portion of grammatical errors we have
encountered are complex, in that they require
marking up several words, and corrections may
have to change several words at once. For ex-
ample, in North Sámi, the biggest class of gram-
matical errors are compound errors, where two
or more adjacent words should be written as one
word. The second biggest class is subject-verb
agreement errors, another complex error. In Lule
Sámi, we have focused on NP-internal number
and case agreement, where the most complex
rules target numeral phrases. These behave differ-

2A technical reference for the system is available at
https://github.com/divvun/libdivvun

ently from the majority language paradigm and are
hence the cause of many errors for bilingual speak-
ers/writers. This class is relevant for all Sámi lan-
guages. Gender agreement errors in noun phrases
are common errors in Irish (and in a number of
other Indo-European languages as well). Green-
landic has been the showcase for word order er-
rors, but these also appear in for example Lule
Sámi, a typical SOV language that is under influ-
ence from the SVO languages Swedish and Nor-
wegian. Greenlandic (standard SOV), faces simi-
lar pressure since speakers are typically bilingual
with Danish (standard SVO). The noun phrase in-
ternal word order differs as well; Greenlandic uses
N A where Danish uses A N.

3 Background

3.1 Previous work

Unlike the common assumption that all language
tasks are solved by machine learning applications,
much grammar checking has had and still has a
rule-based foundation, even in applications that
do not say this outright.3 Bick (2015) has made

3The authors have personally experienced that their own
work on rule-based systems has been presented as “machine

20

https://github.com/divvun/libdivvun

Figure 3: Divvun Grammar checking in LibreOf-
fice (which gives writers autonomy over the choice
of spelling/grammar checking providers)

several CG-based grammar checkers for Danish.
Grammatifix (Arppe, 2000), based on CG, has
been part of the Swedish MS Word since 2000.
Grammarly is a grammar checker for English; lit-
tle is published about their methods, but as Dy-
omkin (2015) reveals it was at that time using rules
on dependency parse-trees.

3.2 Technical background
Below we describe a Constraint Grammar (CG)
module for handling linguistic grammar errors.
Constraint Grammar is a rule-based formalism
originally developed by Karlsson (1990a); Karls-
son et al. (1995). In our work, we use the free and
open source implementation VISL CG-3 (Bick
and Didriksen, 2015). This module is one com-
ponent of a larger pipeline displayed in Figure
4. In this pipeline, the text is first tokenized
and morphologically analysed with finite-state au-
tomata (Beesley and Karttunen, 2003) using the
free and open-source toolkit HFST (Lindén et al.,
2013), in particular hfst-tokenise, with mor-
phologies from the Divvun/Giellatekno infrastruc-
ture (Wiechetek et al., 2022).

As described in Wiechetek et al. (2019), this
step also parses consecutive words as possible
compound errors (words written with extrane-
ous spaces). A divvun-blanktag step adds
useful tags like “start of sentence”. The fol-
lowing Constraint Grammar tags words with va-
lency classes, the next one disambiguates ambigu-

learning” or “AI” for press releases.

ous multi-words. Then a purely mechanical step
cg-mwesplit turns the disambiguated multi-
word analyses into separate CG cohorts.4 A sec-
ond divvun-blanktag step tags some white-
space errors. Then we run the spellchecker – this
may add readings to previously unknown words.
The new readings are also given valency tags by
CG. Next we run a CG disambiguator and syn-
tax tagger – this should ideally leave us with one
reading per word. A second CG is used to fil-
ter out some unlikely spelling suggestions. Then
we arrive at the focus of this article, the grammar
checker CG (marked green in the Figure). This
module contains the rules which tag grammatical
errors, create suggestions and expand underlines.

The final module of the pipeline,
divvun-suggest, uses the information
given by the previous steps to look up word forms
of suggestions, create readable error messages
from error tags, and format it in a way that is
readable to word processor plug-ins and other
user interfaces.

The developer of grammar checker rules typ-
ically sees CG-formatted output when working
with rules, which includes a lot of information that
plug-ins do not need to see. The plug-ins need
a programmatic interface which unambiguously
tells them which words need underlines, and with
what suggestions. This interface needs to use a
format with good library support across program-
ming languages. So divvun-suggest can out-
put in two different formats: human-readable CG
for the developer, and the popular data interchange
format JSON for the plug-ins. The JSON format
is used to communicate suggestions to plug-ins for
LibreOffice, MS Word, Google Docs, web sites
and newspaper publishing systems.

4 Building blocks of grammar checker
rules

Before we get into the complex error examples, we
give an introduction to the way grammar checker
rules are written in our system. Here we describe
the necessary components required to tag some-
thing as an error, to suggest a correction, to under-
line the related words of a context and to refer to
the different parts of an error in an explanation.

We will here write a simplified rule for the com-
mon Norwegian Nynorsk agreement error in ex-

4A cohort in CG is a wordform with all its possible read-
ings.

21

Figure 4: Modular structure of the grammar checkers

ample (1), where the wrong determiner gender is
used, with correction in example (2):

(1) *å
to

føre
keep

eit
an.NT

rekneskap
account.M

(2) å
to

føre
keep

ein
an.M

rekneskap
account.M

‘to keep accounts’

To tag this as an error, we could target
the neuter determiner and give it a tag like
&det-n-nt/m-agr if it precedes a masculine
noun with the following rule, simplified for this
example:

Tags beginning with & are interpreted as error
tags by the divvun-suggest module. This
rule alone will ensure the determiner is underlined
in the user’s word processor, but does not yet lead
to a suggestion. To suggest the form ‘ein’, we can
create a new reading with the correct tags belong-
ing to that form:

The special tag SUGGEST indicates to
divvun-suggest that this is a suggestion;

given the right lemma and tags, the morphological
generator will give the correct form for readings
tagged SUGGEST. With this in place, the user will
also see a drop-down with the suggestion ‘ein’.

We may also want to extend the underline to
the noun, to indicate the relevant context of the
error. We do this by adding a relation RIGHT to
the noun:

This will both extend the underline to include
the noun, and ensure suggestions will include the
noun, so *‘eit rekneskap’ gets the suggestion ‘ein
rekneskap’.

The relation is called RIGHT since we’re ex-
tending the right-hand end of the underline. We
can also add a LEFT relation if we want to extend
the underline to the left of the main error cohort
(the word with the & tag).

Plug-ins may show helpful explanations for
why something is considered an error. These ex-
planations are written in the file errors.xml,
and may refer to word of the main er-
ror cohort with the string $1 – the module
divvun-suggest will replace $1 with the
corresponding word form (here ‘eit’). To re-
fer to another word in an explanation, we can

22

add the $2 (or $3 etc.) relation to it in
the same way as RIGHT, and then use $2 in
the XML description (which here would be re-
placed with ‘rekneskap’), turning a template mes-
sage like ‘$1’ is neuter, but ‘$2’ is
masculine into ‘eit’ is neuter, but ‘rekneskap’
is masculine in the plugin.

5 Adding particles in Lule Sámi

Some times we need to add new words in correc-
tions, for example missing particles:

(3) *Boahtá
come.PRS.3SG

sån
PRON.3SG

sijddaj?
siida.ILL

(4) Boahtá
come.PRS.3SG

gus
PCLE.QST

sån
PRON.3SG

sijddaj?
siida.ILL
‘Is s/he coming home?’

To achieve this, we use the regular CG feature
ADDCOHORT, along with a tag &ADDED to signify
to divvun-suggest that this cohort did not ex-
ist in the input. Since the word did not exist in the
input, we put the error tag on the preceding word,
and give that a relation RIGHT to the added word.5

The user will then see a correction from ‘Boahtá’
to ‘Boahtá gus‘.

6 Linking errors to each other in Irish

Errors may be spread across several words that
need to be fixed as one. We may have a lone noun
with the wrong case, but if it has an article in front,
both may be wrong and need to be fixed.

Consider the Irish phrase below, where (5) has
two words that need changing, example (6) being
the correction:

(5) *Parlaimint
Parliament

an Eoraip
the.SG.DEF Europe.FEM.COM.SG

(6) Parlaimint
Parliament

na hEorpa
the.GEN.SG.DEF.FEM

Europe.FEM.GEN.SG.DEFART
‘Parliament of Europe’

Here we want our suggestion to include changes
to both the noun and the article as in Figure 5. (As
the screenshot shows, the missing human-readable
error explanation becomes glaringly obvious when
testing in a plug-in UI.)

5The added word should also get the same error tag, in
case there are several possible errors in the context.

Figure 5: Divvun Grammar checking for Irish
(Microsoft by default shows the red underlines of
English grammar checking).

The below rules will correct the noun:

But we also want to correct its possible deter-
miner. We could add the below rules, which will
underline the determiner (in this context) and give
it a suggestion:

However, with these rules alone, the system will
see two separate, independent errors, leading to
two disconnected underlines, each with their sug-
gestion. This is not ideal. We want the user to be
able to pick both corrections at once, since they
belong together. To tie them together, we (some-
what arbitrarily) call the noun the "main" word of
the error complex, and add a LEFT relation from
the noun to the determiner:

We use the term co-errors for any words of the
error complex that we do not identify as the main
error cohort. The difference between main and co-
errors may coincide with syntactic relations, but
does not need to – the main error word is often
chosen by the grammar writer based on what is

23

most stably wrong in this type of error.
Strictly speaking, we do not need an error tag at

all for the article in this case. However, as we shall
see below there may be several competing ways
of correcting a complex error, and so we need to
tell the system that this correction of the article
belongs with this correction of the noun. We use
relations to tie together the cohorts, but relations
are cohort-to-cohort, not reading-to-reading. So
we need a matching error tag6 as well to pick out
which readings of the two cohorts are connected.

7 Suggesting several things for one error
in Lule Sámi numeral phrases

Numeral phrases are complex in Lule Sámi and
they can be long. They typically consist of at min-
imum a numeral and a noun with possible mod-
ifiers (attributive adjectives or nouns in genitive
case to mark the possessor). However, they can
also contain coordinated numerals, demonstratives
in front of the numeral and coordinated nouns.

(7) *Moadda
some.ACC.SG

tjijnnujn,
cinema.INE.PL,

girkkojn
church.INE.PL

ja
and

almulasj
common

bájkijn
place.INE.PL

li
are

dákkár
these

teleslivŋŋasa.
hearing.loop

(8) Moatten
some.INE.SG

tjijnnun,
cinema.INE.SG,

girkkon
church.INE.SG

ja
and

almulasj
common.ATTR

bájken
place.INE.SG

li
are

dákkár
these

teleslivŋŋasa.
hearing.loop
‘Such audio induction loops are found in
many cinemas, churches and public places’

We would like it to be corrected as displayed in
Figure 6.

Ex. (8) consists of the following components:

Num Noun 1 and Noun 2 and Adj Noun 3

There can be errors in only the demonstrative,
only the numeral, only the noun, or in all three
parts. That also means that sometimes we have
several suggestions for corrections, depending on
if we want to adapt the numeral to the noun, or

6In some rules you will see the error tag with a prefix
co&, like co&syn-abs-wordorder; this is equivalent to
&syn-abs-wordorder, except it makes it explicit that
this cohort is not the “main” word of the error, so for example
it should not be $1 in explanations.

Figure 6: Divvun Grammar checking for Lule
Sámi

the noun to the numeral. Technically that re-
quires that we link all parts together in a cer-
tain way and also the corrections. In this case,
we have an alternative correction which must be
kept separate – all rules for the example (8) cor-
rection use the tag &msyn-numphrase-sgine
while those for example (9) use the tag
&msyn-numphrase-sgcom in order to avoid
interference.

(9) Måttijn
some.COM.SG

tjijnnujn,
ccomma.COM.SG,

girkkojn
church.COM.SG

ja
and

almulasj
common.ATTR

bájkijn
place.COM.SG

The main error here is the first noun after the
numeral, tjijnnujn. The numeral needs the co-
errortag, and so do all the coordinated nouns.
That means we need LEFT and RIGHT relations;
RIGHT relations to the coordinated things to the
right of the main error, and LEFT relations to the
left of the main error, i.e. the numeral and/or the
demonstrative.

1. ADD-rules for nouns

(a) main error
(b) coordinated nouns (co-error to the

right)
(c) coordinated nominal modifiers

2. COPY rules for nouns

24

3. ADD-rules for simple and coordinated
numerals (co-errors)

4. ADDRELATION-rules from the main
error to its co-errors

(a) main noun to first coordinated noun
(RIGHT)

(b) main noun to second coordinated
nouns (RIGHT)

(c) noun to numeral (LEFT)

5. COPY rules for numerals

6. ADD-rule for demonstratives

7. ADDRELATION rules for demonstra-
tives (LEFT)

8. COPY rule for demonstratives

In addition to the RIGHT and LEFT relation we
add $2–$N to each of the co-errors (the main error
being by default associated with $1), so we can
refer to the word forms in the explanation shown
in the MS Word plug-in etc.

8 Changing word order in Greenlandic

Word order rules are often relevant for languages
that have a different standard word order than
the languages they compete with, such as minor-
ity languages that are spoken in a majority lan-
guage context. Both Greenlandic and Lule Sámi
have SOV (subject object verb) as their standard
word orders, whereas their competitors Danish,
Swedish and Norwegian have a SVO standard
word order, which may interfere and lead to word
order errors. Danish and Greenlandic also differ in
terms of noun phrase internal structure.

Moving around parts of the sentences requires
that we know where the part has been before and
at the same time know where we want to move it
to.

The following set of rules for Greenlandic
applies to possessive nominal phrases that are
marked for their possessor, which is in relative
case. The rules add an error-tag to a noun in abso-
lutive case (the head of a possessum) preceded by
an adjectival absolutive and a noun in relative case
(the possessor). This is an error since in Green-
landic, possessor noun phrases place the adjec-
tive after and not before noun. We also add the

DELETE tag since it is to be removed in the sug-
gestion. We then copy the respective cohort (that
belongs to the possessive adjectival noun phrase)
and place it in the desired position (without remov-
ing the one in the erroneous position) and mark it
with the tag &ADDED to show that this is not the
original but the corrected position. Lastly, we es-
tablish a relation from the erroneous one so that
we get the correct underline.

This rule-set uses the new WITH (Swanson
et al., 2023) feature in CG – the rules inside the
braces will only apply when the outer context con-
ditions match. Their target is the first context, and
they may refer to the following outer contexts with
C1, C2 and so on. This feature lets us avoid some
redundancy in rule contexts.

Figure 7: Divvun Grammar checking for Green-
landic (with MS Word default English spellcheck-
ing)

Example (10) has the wrong word order; the
correct order is in example (11).7

(10) Uunnaaviup
kettle.REL.SG

sanianiittoq
next.to.3SGPOSS.ABS.SG

igalaaq
window.ABS.SG

qiverseriarlugu
upon.opening.1SG>3SG

7For further analysis check https://nutserut.gl/
gloss.

25

https://nutserut.gl/gloss
https://nutserut.gl/gloss

uunnaavik
kettle.ABS.SG
qamissallugu,
when.intend.to.turn.off.1SG>3SG
eqqarsaammerujussuarpunga
think.suddenly.1SG
ikumatiinnarsinnaavara.
can.leave.on.1SG>3SG
‘After/upon opening the window (which
is) next to the kettle, when I went to turn
off the kettle I suddenly thought I can
leave it on.’

(11) Igalaaq uunnaaviup sanianiittoq qi-
verseriarlugu uunnaavik qamissallugu,
eqqarsaammerujussuarpunga ikumatiin-
narsinnaavara.

The word error correction is shown in Figure 7.

9 Performance

The Divvun grammar checker system is used for
many languages, some with more extensive sup-
port than others. Mikkelsen and Wiechetek (2023)
contains an evaluation of the state of the first ver-
sion of the Lule Sámi grammar checker. That anal-
ysis does not include the new developments for
multiword support. An extensive evaluation is out
of scope of this paper, but we plan on evaluating,
both the updated Lule Sámi system as well as other
languages involved in the future.

Preliminary results for Lule Sámi numeral
phrases are promising, cf. Table 1. We tested
on the 39,891 word Lule Sámi corpus for evalu-
ation purposes (SIKOR), which has been marked-
up and then run through GramDivvun.

Metric Count
False Positives 12
False Negatives 17
True Positives 42
F1 74.3 %

Table 1: Evaluation results for numeral phrases

A third of the false negatives in our test are nu-
meral phrases including the word åvtå/avta. We
decided against performing grammar checking on
this word due to its polysemy (in addition to the
numeral one it also means same) which would lead
to a lot of false positives.

Some of the false positives regard other gram-
matical constructions like 20 jahkásasj meaning

20-year-old and are mistaken to be part of a larger
numeral phrase by the grammar checker.

10 Summing up

As this paper shows, the combination of finite state
morphologies and Constraint Grammar lets us de-
tect and correct a wide range of complex grammat-
ical errors in morphologically rich, low-resource
languages. The rule formalism and the surround-
ing tools enable proofing for languages that do
not have official support in word processors like
Microsoft Word and Google Docs – and in prin-
ciple any text editing tool with some support for
spelling and grammar plug-ins. Bridging the gap
from the command-line to mainstream user inter-
faces both increases the usefulness of these tools,
and boosts development progress – the user inter-
face lets the linguist see the feedback from new an-
gles and highlights shortcomings one might other-
wise miss. When working on different languages,
we discover new challenges in error correction.
Looking forward, we plan to explore additional
languages, cover more error types and streamline
the rule writing process. The approach described
in this paper demonstrates that rule-based GEC is
an effective solution for correcting complex errors
in languages that receive little-to-no official sup-
port from mainstream software vendors, enabling
a user-friendly interface which gives speakers and
learners of low-resource languages access to high
quality proofing tools.

Acknowledgments

We thank Inga Lill Sigga Mikkelsen for her invalu-
able work on Lule Sámi, her help with the evalua-
tion and suggestions for how the Constraint Gram-
mar formalism should practically resolve grammar
checking corrections. We thank Judithe Denbæk
for her work on Greenlandic grammar checking.
We thank Seanán Ó Coistín for his initiative to
start up Irish grammar checking.

References
Antti Arppe. 2000. Developing a grammar checker

for Swedish. In Proceedings of the 12th Nordic
Conference of Computational Linguistics (NoDaL-
iDa 1999), pages 13–27, Department of Linguistics,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-

26

state morphology: Xerox tools and techniques.
CSLI, Stanford, pages 359–375.

Eckhard Bick. 2000. The Parsing System ’Palavras’:
Automatic Grammatical Analysis of Portuguese in
a Constraint Grammar Framework (higher doctoral
dissertation). Aarhus University Press, Aarhus.

Eckhard Bick. 2015. DanProof: Pedagogical spell and
grammar checking for Danish. In Proceedings of the
10th International Conference Recent Advances in
Natural Language Processing (RANLP 2015), pages
55–62, Hissar, Bulgaria. INCOMA Ltd.

Eckhard Bick and Tino Didriksen. 2015. CG-3 – be-
yond classical Constraint Grammar. In Proceed-
ings of the 20th Nordic Conference of Computa-
tional Linguistics (NoDaLiDa 2015), pages 31–39.
Linköping University Electronic Press, Linköpings
universitet.

Tino Didriksen. 2010. Constraint Grammar Manual:
3rd version of the CG formalism variant. Grammar-
Soft ApS, Denmark.

Vsevolod Dyomkin. 2015. Running lisp in production.

Fred Karlsson. 1990a. Constraint Grammar as a
Framework for Parsing Running Text. In Proceed-
ings of the 13th Conference on Computational Lin-
guistics (COLING 1990), volume 3, pages 168–173,
Helsinki, Finland. Association for Computational
Linguistics.

Fred Karlsson. 1990b. Constraint grammar as a frame-
work for parsing unrestricted text. In Proceedings of
the 13th International Conference of Computational
Linguistics, volume 3, pages 168–173, Helsinki.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint Grammar: A
Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin.

Krister Lindén, Erik Axelson, Senka Drobac, Sam
Hardwick, Juha Kuokkala, Jyrki Niemi, Tommi A
Pirinen, and Miikka Silfverberg. 2013. Hfst—a sys-
tem for creating nlp tools. In International work-
shop on systems and frameworks for computational
morphology, pages 53–71. Springer.

Inga Lill Sigga Mikkelsen and Linda Wiechetek.
2023. Supporting language users-releasing a full-
fledged lule sámi grammar checker. In Proceed-
ings of the NoDaLiDa 2023 Workshop on Constraint
Grammar-Methods, Tools and Applications, pages
37–45.

SIKOR. UiT The Arctic University of Norway and the
Norwegian Saami Parliament’s Saami text collec-
tion, Version 06.11.2018. http://gtweb.uit.
no/korp. Accessed: 2018-11-06.

Daniel Swanson, Tino Didriksen, and Francis Tyers.
2023. With context: Adding rule-grouping to visl

cg-3. In Proceedings of the NoDaLiDa 2023 Work-
shop on Constraint Grammar-Methods, Tools and
Applications, pages 10–14.

Linda Wiechetek, Katri Hiovain-Asikainen, Inga
Lill Sigga Mikkelsen, Sjur Moshagen, Flammie Piri-
nen, Trond Trosterud, and Børre Gaup. 2022. Un-
masking the myth of effortless big data - making an
open source multi-lingual infrastructure and build-
ing language resources from scratch. In Proceedings
of the Thirteenth Language Resources and Eval-
uation Conference, pages 1167–1177, Marseille,
France. European Language Resources Association.

Linda Wiechetek, Sjur Nørstebø Moshagen, and
Kevin Brubeck Unhammer. 2019. Seeing more than
whitespace — tokenisation and disambiguation in a
North Sámi grammar checker. In Proceedings of the
3rd Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages Volume
1 (Papers), pages 46–55, Honolulu. Association for
Computational Linguistics.

27

http://visl.sdu.dk/cg3/vislcg3.pdf (Accessed 2017-11-29)
http://visl.sdu.dk/cg3/vislcg3.pdf (Accessed 2017-11-29)
https://www.grammarly.com/blog/engineering/running-lisp-in-production/
https://aclanthology.org/2023.nodalida-cgmta.6.pdf
https://aclanthology.org/2023.nodalida-cgmta.6.pdf
http://gtweb.uit.no/korp
http://gtweb.uit.no/korp
https://aclanthology.org/2023.nodalida-cgmta.2.pdf (Accessed 2024-10-28)
https://aclanthology.org/2023.nodalida-cgmta.2.pdf (Accessed 2024-10-28)
https://aclanthology.org/2022.lrec-1.125
https://aclanthology.org/2022.lrec-1.125
https://aclanthology.org/2022.lrec-1.125
https://aclanthology.org/2022.lrec-1.125
https://aclanthology.org/W19-6007
https://aclanthology.org/W19-6007
https://aclanthology.org/W19-6007

