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Preface

These proceedings contain the papers presented at the 3rd Workshop on the Use of Computational
Methods in the Study of Endangered languages held in Hawai’i at Mānoa, February 26–27, 2019. As
the name implies, this is the third workshop held on the topic—the first meeting was co-located with
the ACL main conference in Baltimore, Maryland in 2014 and the second one in 2017 was co-located
with the 5th International Conference on Language Documentation and Conservation (ICLDC) at the
University of Hawai‘i at Mānoa.

The workshop covers a wide range of topics relevant to the study and documentation of endangered
languages, ranging from technical papers on working systems and applications, to reports on community
activities with supporting computational components.

The purpose of the workshop is to bring together computational researchers, documentary linguists, and
people involved with community efforts of language documentation and revitalization to take part in
both formal and informal exchanges on how to integrate rapidly evolving language processing methods
and tools into efforts of language description, documentation, and revitalization. The organizers are
pleased with the range of papers, many of which highlight the importance of interdisciplinary work and
interaction between the various communities that the workshop is aimed towards.

We received 34 submissions as papers or extended abstracts. After a thorough review process, 12 of the
submissions were selected for this volume as papers (35%) and an additional 7 were accepted as extended
abstracts which appear in Volume 2 of the workshop proceedings. The organizing committee would like
to thank the program committee for their thoughtful input on the submissions. We are also grateful to
the NSF for funding part of the workshop (award #1550905), and the Social Sciences and Humanities
Research Council (SSHRC) of Canada for supporting the workshop through their Connections Outreach
Grant #611-2016-0207.
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Abstract
We present two pieces of interlocking technol-
ogy in development to facilitate community-
based, collaborative language description and
documentation: (i) a mobile app where
speakers submit text, voice recordings and/or
videos, and (ii) a community language por-
tal that organizes submitted data and provides
question/answer boards whereby community
members can evaluate/supplement submis-
sions.

1 Introduction

While engagement of language communities, and
diverse members thereof, is crucial for adequate
language documentation and description, this is
often a challenging task given the finite resources
of field linguists. We present a technological plat-
form designed to accelerate and make more in-
clusive the process of documenting and describ-
ing languages with the goal of enabling language
communities to become researchers of their own
languages and curators of language-based facets
of their culture.

We are currently developing two pieces of inter-
locking technology: (i) a mobile app whose func-
tionality and simplicity is reminiscent of Whats-
App (which is widespread in, for instance, West
Africa) through which speakers submit text, voice
recordings and/or videos, and (ii) an community
language portal that, for each language, organizes
and displays submitted data and provides dis-
cussion and question/answer boards (in the style
of Quora or Stack Exchange) where community
members can evaluate, refine, or supplement sub-
missions. Together, these permit field linguists,
community educators and other stakeholders to
serve in the capacity as “language community
coordinator”, assigning tasks that are collabora-
tively achieved with the community. This technol-
ogy shares similarities with recent efforts such as

Aikuma (Bird et al., 2014) or Kamusi (Benjamin
and Radetzky, 2014); however, the focus is on de-
veloping a limited range of functionalities with an
emphasis on simplicity to engage the highest num-
bers of community members. This in turn will ac-
celerate the most common tasks facing a language
description and/or documentation project and do
so at a technological level in which all community
members who are capable of using a mobile phone
app may participate.

In this paper, we first exemplify the mobile app
with the process of developing language resources
with developing a lexicon. Section 2 contains an
overview of the application, Section 3 is a discus-
sion of the different user interfaces, and Section 4
gives the implementation details. Finally, we ad-
dress extensions currently under development in
Section 5.

2 Language Resource Development

Lexica and other resources are developed through
the interaction between coordinators and contrib-
utors. The coordinator, who could be a linguist
and/or community member, puts out queries for
information and accepts submissions through a
web console written in TypeScript using the Re-
act framework. Contributors use the mobile inter-
face, built with React Native, a popular JavaScript
framework for mobile development, to add words
in both spoken and written form, along with pic-
tures. The accepted submissions are used to au-
tomatically generate and update interactive online
resources, such as a lexicon.

For lexicon development, the platform is able to
accommodate a wide variety of scenarios: mono-
lingual or bilingual, textual and/or audio along
with possible contribution of pictures or video
files. Thus, in one scenario a coordinator work-
ing on a language for which textual submissions
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are infeasible could send requests in the form
of recorded words soliciting “folk definitions” of
those words (Casagrande and Hale, 1967; Laugh-
ren and Nash, 1983), that is, the speakers them-
selves supply the definition of a word, typically
producing more words that can be requested by the
coordinator. Alternately, semantic domains may
serve as the basis of elicitation in the style of Al-
bright and Hatton (2008) or in relation to resources
such as List et al. (2016). Built into our approach
is the ability to record language variation: For lex-
icon entries, multiple definitions and forms can be
provided by different speakers, which can then be
commented and/or voted on, until a definition (or
definitions) is generally accepted and variation is
properly recorded.

Analogous processes allow speakers to con-
tribute varieties of language-based cultural con-
tent: folktales, oral histories, proverbs, songs,
videos explaining cultural practices and daily
tasks (cooking, sewing, building houses, etc.). Ac-
cordingly, this method may be used to develop
(i) data repositories and resources for researchers
in linguistics and allied fields, especially those
touching on studies in language and culture, and
(ii) educational materials and other materials that
may benefit the community.

3 User Interface

For the purposes of this section, we focus on the
task of developing a lexicon on the basis of a pre-
determined wordlist, such as the SIL Comparative
African Word List (Snider and Roberts, 2004), a
common scenario for a fieldworker working on an
under-described language for which the speakers
also speaks an administrative language such as En-
glish or French.

Users of the application fall into three cate-
gories: coordinators, contributors, and consumers.
A coordinator can be a member of the language
community, such as an elder or group of elders,
or she might be a field linguist working within
the community. Coordinators handle adding new
words to translate, assigning words to contribu-
tors, and accepting or rejecting submitted trans-
lations. Coordinators also have the ability to as-
sign contributors and words to subgroups. This
is useful if there are specialized vocabularies spe-
cific to only a portion of the community, for exam-
ple, hunters who use a different vocabulary while
hunting. A contributor is a community member

who has been chosen by the coordinators to com-
plete the translation work. Finally, a consumer
is anyone who has access to the community lan-
guage portal that is created from the submissions
accepted by the coordinators.

We see the development of the community lan-
guage portal and the presentation of speakers shar-
ing their language as key for motivating contin-
ued contributions. We expect that the varieties
of language-based cultural content speakers con-
tribute as part of the documentation activities, e.g.,
folk tales or oral histories, will be a key motivator
for community members to use and contribute to
the platform. We provide functionality for con-
sumers to also become contributors. For instance,
next to contributed videos, a button allows con-
sumers to contribute their own video. Content
so contributed will not be directly accepted to the
database, but will require approval from the coor-
dinator, so as to provide a check on inappropriate
content.

The following subsections give sample user sto-
ries for each type of user. As will be detailed in
Section 4, users will sign in with a Google ac-
count, which provides a straightforward solution
for user authentication. In the following user sto-
ries we use English and Konni [kma] as our exam-
ple languages, though the application can work for
any pairing.

3.1 Contributor

A new contributor joins the language descrip-
tion and documentation effort. They belong to
a Ghanaian community that speaks English and
Konni, which is the language they want to describe
and document. They open the mobile application
and sign in with their Google account credentials.
Upon the initial sign in, the contributor must pro-
vide responses to secure consent in accordance
with an IRB protocol. Then the contributor is pre-
sented with a demographic survey. Once success-
fully logged in, they see the home screen, which
displays their assignments, e.g., a list of semantic
prompts or words in English (see Figure 1). They
select a word from the list by tapping it. They are
then taken to a form with fields for the transla-
tion of the word in Konni, a sample sentence using
the word in English, and a translation of the sen-
tence in Konni. There are also two fields for au-
dio recordings of the word and sentence in Konni.
When the user selects these fields they see a screen
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Figure 1: Application home page.

with Start and Stop buttons. Pressing Start begins
recording using the phone’s microphone and Stop
ends the recording and saves the audio as a WAV
file. When they have filled in all of the fields, they
press the Submit button at the bottom of the screen
and are taken back to the home screen. Now the
word that they just translated is green and has a
check-mark next to it (see Figure 2). They now
also see a button at the bottom of the home screen
that reads Submit 1 translation(s). When they are
ready to submit their completed translations, they
press that button. If their phone is currently con-
nected to the Internet, the translated words will be
removed from the list and new words will appear.
If not, they can continue translating or wait to en-
ter an area with WiFi.

Figure 2: Word translation page.

3.2 Coordinator

A coordinator wants to review some translations
and assign more words to contributors. He starts
by opening a web browser and navigating to his
documentation project’s web page. After logging
in with his Google account credentials he sees that
a contributor has just submitted three new trans-
lations that need to be reviewed. The coordinator
reviews all of the translations and decides that two
of them are ready for publishing, but one of them
needs a better example sentence. He rejects the
translation with a note explaining why it was re-
jected, and the word is put back into circulation
automatically by the system. The two accepted
words will no longer be added to users’ word lists
unless manually added back into the database.
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3.3 Consumer

A consumer who visits the Community Language
Portal navigates to a part of the website providing
a picture gallery of everyday and cultural artifacts.
As she looks through the pictures and their cap-
tions, she notices that the word for water pitcher
has a different form than is used in her village.
She clicks on the ‘Contribute’ button, and is able
to either leave a comment about the caption or go
through the sign-up process to become a contribu-
tor. The coordinator reviews her submission, and,
if appropriate, adds her to the contributors, later
sending out more invitations to contribute.

4 Implementation Details

Users of the application only see information rele-
vant to their current task, but all user and language
data is stored and managed in a remote database.
The application communicates with a CherryPy
web server, which acts as the glue between these
two components. For example, consider the Konni
contributor trying to submit some translations. Be-
fore doing anything, the user must first sign in.
To avoid having to manage passwords we require
users to connect to the application using a Google
account. Then the application communicates with
Google’s Authentication Server using the OAuth
2.0 protocol to retrieve an authentication token
that uniquely identifies the user. When the con-
tributor presses Submit, the phone will first store
the translation information locally and wait until
it enters an area with a strong Internet connec-
tion. Once connected, it then sends an HTTP re-
quest to the web server containing the translations
to be submitted (multiple translations are batched
together for efficiency), as well as the authentica-
tion token. Upon receiving the request, the server
uses the token to verify that the user exists and has
the proper permissions. It then adds the transla-
tions to the database and queries it for a new set of
untranslated words. Finally the server responds to
the application indicating that the submission was
successful and containing the new words.

At the lowest level of the application stack is
a MySQL database that is responsible for storing
user information and translations. It consists of
three tables: words for the words that are to be
translated, users for all the application users,
and translations for all submitted transla-
tions, both reviewed and unreviewed. An entry in
words contains the word itself, as well as other

grammatical information, such as part-of-speech.
The users table contains users’ names, their
Google authentication tokens, their roles (contrib-
utor or coordinator), and the maximum number of
words that can be assigned to them. Each row in
translations consists of the word translated
to the target language, a sentence containing the
word in the source language, the same sentence
translated, paths to audio files containing record-
ings of the word and sentence, and a flag indicat-
ing whether the translation has been accepted.

This is a natural division of the data that al-
lows the tables to grow independently of one an-
other (e.g. adding a new user only affects the
users table). However, we often want to make
queries that depend on information from multi-
ple tables, such as searching for words with no
accepted translations that are assigned to fewer
than three users. To facilitate these searches we
also introduce links between the tables. A word
can have multiple translations, but each translation
corresponds to exactly one word, so words and
translations have a 1-many relation. Sim-
ilarly, because a user may have many submitted
translations, and each translation was submitted by
one user, users and translations also have
a 1-many relation. On the other hand, a word can
be assigned to several users, and a user may have
multiple assigned words, so words and users
have a many-many relation.

5 Current Developments

With this groundwork laid on the application, we
are expanding other aspects of the project. Since
one of our primary goals is to engage community
members, we are pursuing more ways for them to
engage with the software and data. To that end, we
are designing a discussion board for raising ques-
tions about accepted materials, asking for clarifi-
cation on words, debates, polls, and so forth. Any-
one from the community will be able to use this
software. In short, we aim to leverage successful
examples of online community building to further
language description and documentation.

It is possible that contributors use slightly dif-
ferent lexica within the community. For exam-
ple, in a community that has a designated group of
hunters, the hunters might use different words in
the field that community members who stay in the
village most of the time don’t know. In this exam-
ple, a coordinator might want to gather lexical data
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from both groups, so they should be able to mark
which users belong to which sub-communities in
the database. At the moment, we have back-end
functionality for this sub-grouping of words and
users, but no way for a coordinator to interact with
this feature from the application. In the meantime,
words are assigned to users automatically.

Having a way for a coordinator to assign words
to specific users will also be an important feature.
It is very likely that contributors will sometimes
be working in areas with a lot of background noise,
and not everyone will have a phone that can record
high-quality audio. Giving coordinators the abil-
ity to reassign words to users who they know can
record with better sound quality will ensure high-
quality data, which can then be used later in lin-
guistic analysis.
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Abstract

Application software has the potential to
greatly reduce the amount of human labor
needed in common language documentation
tasks. But despite great advances in the matu-
rity of tools available for apps, language docu-
mentation apps have not attained their full po-
tential, and language documentation projects
are forgoing apps in favor of less specialized
tools like paper and spreadsheets. We argue
that this is due to the scarcity of software de-
velopment labor in language documentation,
and that a careful choice of software devel-
opment tools could make up for this labor
shortage by increasing developer productiv-
ity. We demonstrate the benefits of strategic
tool choice by reimplementing a subset of the
popular linguistic annotation app ELAN using
tools carefully selected for their potential to
minimize developer labor.

1 Introduction

In many domains like medicine and finance, ap-
plication software has dramatically increased pro-
ductivity, allowing fewer people to get more done.
This kind of labor reduction is sorely needed in
language documentation, where there is not nearly
enough labor to meet all the demand in the world
for language documentation.

There is every reason to think that application
software (“apps”) could also help language docu-
mentation (LD) practitioners get their work done
more quickly. But despite the availability of sev-
eral LD apps, many practitioners still choose to
use paper, spreadsheets, or other generic tools
(Thieberger, 2016). Why aren’t practitioners us-
ing apps?

1.1 Perennial problems in LD apps

The simplest explanation is that the apps are not
helpful enough to justify the cost of learning and

adjusting to them. While it is clear by now from
progress in natural language processing that it is
technically possible to make laborious tasks such
as glossing and lexicon management less time-
consuming by orders of magnitude, flashy features
like these turn out to be only one part of the prac-
titioner’s decision to adopt an app. It seems that
other factors, often more mundane but no less im-
portant, can and often do nullify or outweigh these
benefits in today’s apps. Three kinds of problems
can be distinguished which are especially impor-
tant for LD apps.

First, there is the unavoidable fact that the user
will need to make unwanted changes to their work-
flow to work within an app. By virtue of its struc-
ture, an app will always make some tasks prerequi-
sites for others, or at least make some sequences of
tasks less easy to perform than others. Ideally, an
app designer will be successful in identifying the
task-sequences that are most likely to be preferred
by their user and ensure that these workflows are
supported and usable within the app. But no mat-
ter how clever they are, their app will always push
some users away from their preferred workflow.
For app adoption, this presents both a barrier to
entry and a continuous cost (if a user is never able
to fully adapt themselves to the app’s structure).

Second, app developers often make simplifying
assumptions which sacrifice generality for devel-
opment speed. For instance, an app’s morphologi-
cal parser might not be capable of recognizing dia-
critics as lexically meaningful, which would limit
the app’s usability, e.g. for the many languages
which represent lexical tone with diacritics.

Third, an app might lack a feature altogether.
An app might only work on a particular operat-
ing system like Windows, or might not work with-
out an internet connection, both of which might
single-handedly make an app unusable. In another
vein, it might be critical for a project to have texts
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be annotated with a syntactic parse, or for all texts
to be exportable into a particular format, like as an
ELAN (Wittenburg et al., 2006) or FLEx (Moe,
2008) project. If a user cannot perform a cru-
cial kind of linguistic annotation, or move their
data into another app which is critically impor-
tant for them, they are likely to not use the app at
all, no matter how good it might be at segmenting
text into tokens, morphologically parsing words,
or managing a lexical inventory. Indeed, the fea-
tures which might be absolutely necessary for any
given practitioner are in principle at least as nu-
merous as the number of formalisms and levels of
analysis used by all linguists, and it is to be ex-
pected that an app will be inadequate for a great
number of potential users.

1.2 The need for more developer labor

Whatever the exact proportions of these prob-
lems in explaining the under-adoption of apps, it
seems clear that they all could be solved relatively
straightforwardly with more software engineering
labor. Much of the hard work of inventing the
linguistic theories and algorithms that would en-
able an advanced, labor-saving LD app has already
been done. What remains is the comparatively
mundane task of laying a solid foundation of ev-
eryday software on which we might establish these
powerful devices, and the problem is that in LD,
software engineering labor is—as in most places
in science and the academy—markedly scarce.

With a few notable exceptions1, LD apps have
largely been made by people (often graduate stu-
dents) who have undertaken the project on top of
the demands of their full time occupation. Con-
sidering how in industry entire teams of highly-
skilled full-time software engineers with ample
funding regularly fail to create successful apps, it
is impressive that LD apps have attained as much
success as they have. Nevertheless, most LD soft-
ware will continue to be produced only in such
arid conditions, and so the question becomes one
of whether and how it might be possible to cre-
ate and maintain a successful app even when the
only developers will likely be people like graduate
students, who must balance the development work
with their other duties.

While pessimism here would be understand-
able, we believe it is possible to create an app that

1FLEx, ELAN, and Miromaa all have at least one full-
time software engineer involved in their development.

is good enough to be worth using for most prac-
titioners even under these circumstances. While
there is still not much that is known with certainty
about productivity factors in software engineering
(Wagner and Ruhe, 2018), many prominent soft-
ware engineers believe that development time can
be affected dramatically by the tools that are used
in the creation of an app (Graham, 2004).

Apps depend on existing software libraries, and
these libraries differ in dramatic ways: some
databases are designed for speed, and others are
designed for tolerating being offline; some user in-
terface frameworks are designed for freedom and
extensibility, and others double down on opinion-
ated defaults that are good enough most of the
time; some programming languages are always
running towards the cutting edge of programming
language research, and others aim to be eminently
practical and stable for years to come. It is obvi-
ous that these trade-offs might have great conse-
quences for their users: a given task might take a
month with one set of tools, and only a few days
with another.

We should expect, then, that the right combina-
tion of tools could allow LD app developers to be
much more productive. If this is true, then if only
we could choose the right set of tools to work with,
we might be able to overcome the inherent lack of
development labor available for LD apps.

2 Cloning ELAN

To put this hypothesis to the test, we recreated
the rudiments of an app commonly used for LD,
ELAN (Wittenburg et al., 2006). Choosing an ex-
isting app obviated the design process, saving time
and eliminating a potential confound. ELAN was
chosen in particular because of its widespread use
in many areas of linguistics, including LD, and be-
cause its user interface and underlying data struc-
tures are complicated. We reasoned that if our ap-
proach were to succeed in this relatively hard case,
we could be fairly certain it could succeed in eas-
ier ones, as well.

With an eye to economic problems of LD app
development outlined in section 1.2, we first deter-
mined what features we thought an advanced LD
app would need to prioritize in order to make de-
velopment go quickly without compromising on
quality. Then, we chose software libraries in ac-
cord with these requirements.
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2.1 Requirements and tool choices

There were four requirements that seemed most
important to prioritize for an LD app. These were:
(1) that the app be built for web browsers, (2) that
the app work just as well without an internet con-
nection, (3) that expected “maintenance” costs be
as low as possible, and (4) that graphical user in-
terface development be minimized and avoided at
all costs.

2.1.1 Choice of platform: the browser

15 years ago, the only platform that would have
made sense for an LD app was the desktop.
These days, there are three: the desktop, the web
browser, and the mobile phone. While the mobile
phone is ubiquitous and portable, it is constrained
by its form factor, making it unergonomic for
some kinds of transcription and annotation. The
desktop platform has the advantage of not expect-
ing an internet connection, and indeed the most
widely used LD apps such as FLEx and ELAN
have been on the desktop, but it is somewhat dif-
ficult to ensure that a desktop app will be usable
on all operating systems, and the requirement that
the user install something on their machine can be
prohibitively difficult.

The web browser resolves both of these diffi-
culties: no installation is necessary, since using
an app is as easy as navigating to a URL, and the
problem of operating system support is taken care
of by web browser developers rather than app de-
velopers.

2.1.2 Offline support: PouchDB

The notable disadvantage of web browsers com-
pared to these other platforms, however, is that
the platform more or less assumes that you will
have an internet connection. The simple problem
is that language documentation practitioners will
often not have a stable internet connection, and if
an app is unusable without one, they will never use
the app at all.

Fortunately, there are libraries that can enable a
browser app to be fully functional even without an
internet connection. The main reason why a typ-
ical browser app needs an internet connection is
that the data that needs to be retrieved and changed
is stored in a database somewhere on the other end
of a network connection. But there are databases
that can be installed locally, removing the need for
an uninterrupted internet connection.

Figure 1: PouchDB imitates a traditional database, but
it exists alongside the app in a user’s local machine
rather than on a remote server. When an internet con-
nection becomes available, PouchDB can sync with the
remote server and other clients, meaning that sharing
and securely backing up data is still possible.

The most advanced database for this purpose
is PouchDB. PouchDB is a browser-based im-
plementation of the database system CouchDB.
This means that PouchDB acts just like a nor-
mal database would, except it is available lo-
cally instead of over a network connection. And
when an internet connection does become avail-
able, PouchDB is able to share changes with a
remote instance of CouchDB, which then makes
them available to other collaborators, as seen in
figure 1. PouchDB and CouchDB were specially
designed to make this kind of operation easy, and
retrofitting the same behavior with a more tradi-
tional choice of tools would be extremely time
consuming.

An added benefit of adopting this database strat-
egy is that it dramatically reduces the need for
client-server communication code. Normally, an
entire layer of code is necessary to package, trans-
mit, and unpackage data between the client and the
server, which most of the time amounts to noth-
ing more than boilerplate. With this approach, all
of that is taken care of by the replication proto-
col which allows PouchDB instances to sync with
CouchDB instances, and the server code that is re-
quired by a small set of cases (e.g. triggering a
notification email) can still exist alongside this ar-
chitecture.

We are not the first to realize PouchDB’s po-
tential for writing an LD app: FieldDB (aka
LingSync) (Dunham et al., 2015) uses PouchDB.
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2.1.3 Minimizing maintenance:
ClojureScript

Software requires some degree of modification as
time goes on. Almost all software relies on other
software, and when breaking changes occur in a
dependency, an app must also have its code mod-
ified to ensure that it can continue operating with
the latest version of its dependency. For instance,
much of the Python community is still migrating
their code from Python 2 to Python 3, an error-
prone process that has consumed many thousands
of developer-hours worldwide.

This kind of maintenance is, at present,
quite common for browser apps: web browsers,
JavaScript, and JavaScript frameworks are evolv-
ing at a quick pace that often requires teams to
constantly modify their code and compilers, and
sometimes to even abandon a core library alto-
gether in favor of a better one, which incurs a
massive cost as the team excises the old library
and stitches in the new one. These maintenance
costs are best avoided if possible, as they con-
tribute nothing valuable to the user: in the best
case, after maintenance, no change is discernible;
and if the best case is not achieved, the app breaks.

We surveyed programming languages that can
be used for developing browser applications and
were impressed by the programming language
called ClojureScript. ClojureScript is a Lisp-
family functional programming language that
compiles to JavaScript. The language is remark-
ably stable: ClojureScript written in 2009 still
looks essentially the same as ClojureScript writ-
ten in 2018. The same cannot often be said for
JavaScript code.

A full discussion of the pros and cons of Clo-
jureScript is beyond the scope of this paper, but it
might suffice to say that ClojureScript offers very
low maintenance costs and powerful language fea-
tures at the cost of a strenuous learning process.
Unlike Python, Java, or JavaScript, ClojureScript
is not object-oriented and does not have ALGOL-
style syntax, making it syntactically and seman-
tically unfamiliar. This is a serious penalty, as it
may reduce the number of number of people who
could contribute to the app’s development. How-
ever, this may turn out to be a price worth paying,
and as we will see in section 2.3.2, this disadvan-
tage can be mitigated somewhat by allowing users
and developers to extend the app using more fa-
miliar programming languages.

Figure 2: Trafikito, an app that uses Material-UI to sup-
port for mobile and desktop clients.

2.1.4 Minimizing GUI development:
Material-UI

Creating user interface components for the
browser from scratch is extremely time consum-
ing. In the past several years, however, numer-
ous comprehensive and high-quality open source
component libraries for the browser have been re-
leased. Most parts of an LD app can be served
well by these off-the-shelf components, making it
an obvious choice to outsource as much UI devel-
opment as possible to them.

The only concern would be that these libraries
might be abandoned by their maintainers. While
this is always a possibility, the communities that
maintain the most prominent among these libraries
are very active, and in the event that their current
maintainers abandoned them, it seems likely that
the community would step up to take over mainte-
nance.

We chose to work with Material-UI, a library of
components for Facebook’s React UI framework
that adheres to Google’s Material Design guide-
lines. Beyond providing a set of high-quality com-
ponents, with the v1.0 release of Material-UI, all
components have been designed to work well on
mobile clients, which has the potential to make an
app developed with Material-UI usable on mobile
phones at no extra development cost for the app
developer, an incredible timesaving benefit. (See
figure 2.)

2.2 Results

Using these tools, we were able to create a browser
app that implements a subset of ELAN in about 3
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Figure 3: A screenshot of ELAN, above, and EWAN, below, for a given sample project.
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weeks of development time2. Our implementation
process basically confirmed our hypothesis: that
our careful choice of tools made developers more
productive, and vastly simplified the implementa-
tion of certain features that are critical to LD apps.

ELAN is an app that allows users to annotate
a piece of audio or video along multiple aligned
“tiers”, each of which represents a single level
of analysis for a single kind of linguistic or non-
linguistic modality. For instance, in the example
project in figure 3 (shown in both ELAN and our
reimplementation, EWAN), for one of the speak-
ers, there is a tier each for the speaker’s sentence-
level utterance, the speaker’s utterance tokenized
into words, IPA representations of those words,
and the parts of speech for those words; and there
is another tier for describing the speaker’s gestic-
ulations. Users are able to configure tiers so that
e.g. a child tier containing parts of speech may
not have an annotation that does not correspond to
a word in the parent tier, and the app coordinates
the UI so that the annotation area always stays in
sync with the current time of the media player.

We implemented ELAN’s behavior to a point
where we felt we had been able to evaluate our
hypothesis with reasonable confidence. In the end,
this amounted to implementing the following fea-
tures: (1) a basic recreation of the ELAN interface,
(2) importing and exporting ELAN files, (3) read-
only display and playback of projects, (4) editing
of existing annotations, and (5) completely offline
operation with sync capabilities. Most notably
missing from this list is the ability to create new
tiers and annotations, but we did not feel that im-
plementing these features would have significantly
changed our findings.

The creation of the interface with Material-UI
was straightforward. The only UI components that
involved significant custom development were the
tier table and the code that kept the table and the
video in sync: everything else, including the forms
that allowed users to create new projects and im-
port existing projects, was simply made with the
expected Material-UI components.

ClojureScript’s XML parsing library made im-
porting and exporting ELAN project files a
straightforward matter. Internally, EWAN uses
the ELAN project file format as its data model,

2Our app can be seen at
https://lgessler.com/ewan/ and
our source code can be accessed at
https://github.com/lgessler/ewan.

so there was no additional overhead associated
with translating between EWAN and ELAN for-
mats. To ensure the validity of the data un-
der any changes that might be made in EWAN,
we used ClojureScript’s cljs.spec library to en-
force invariants3. cljs.spec is one language fea-
ture among many that we felt made ClojureScript a
good choice for enhancing developer productivity:
cljs.spec allows developers to declaratively en-
force data model invariants, whereas in most other
languages more verbose imperative code would
have to be written to enforce these invariants.

Projects were stored in PouchDB, and all the
expected benefits were realized: an internet con-
nection is no longer needed. Indeed, on the demo
deployment of the app, there is not even a re-
mote server to accompany it: once the app has
been downloaded, users may use the app in its en-
tirety without an internet connection. With ease,
we were able to set up an instance of CouchDB on
a remote server and sync our EWAN projects with
it, even in poor network conditions.

2.3 Extensions

At the point in development where we stopped,
there were features which we were close enough
to see with clarity, even though we did not imple-
ment them. These are features we expect would
be easily within reach if a similar approach were
taken to creating a LD app.

2.3.1 Real-time collaboration
Google Docs-style real-time collaboration, where
multiple clients collaborate in parallel on a sin-
gle document, is well supported by our choice of
PouchDB. Implementation is not entirely trivial,
but the hard part—real-time synchronization with-
out race conditions or data loss—is handled by
CouchDB’s replication protocol. It is debatable
how useful this feature might be in an LD app, but
if it were needed, it would be easily within reach.

2.3.2 User scripts with JavaScript
Power users delight in the opportunity to use a
scripting language to tackle tedious or challeng-
ing tasks. Because this app was built in the web
browser, we already have a language with excel-
lent support at our disposal that was designed to

3An invariant in this context is some statement about the
data that must always be true. For example, one might want
to require that an XML element referenced by an attribute in
another element actually exists.
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Figure 4: Examples of what a JavaScript scripting in-
terface for EWAN might look like. An API imple-
mented in ClojureScript with functions intended for use
in JavaScript that can modify EWAN’s data structures
is made available in a global namespace, and power
users can use the scripting functions to perform bulk
actions and customize their experience.

be easy for users to pick up and write small snip-
pets with: JavaScript.

Since ClojureScript compiles to JavaScript and
is designed for interoperation, it is very easy to
make such a system available. As shown in figure
4, a special module containing user-facing func-
tions that are meant to be used from a JavaScript
console could be created. This could be used for
anything from bulk actions to allowing users to
hook into remote NLP services (e.g. for morpho-
logical parsing, tokenization, etc.).

The possibilities are endless with a user-facing
API, and a thoughtfully constructed scripting API
could do much to inspire and attract users. It’s
worth noting that this feature was made possible
by our choice of platform: had we not been using
the browser, we would have had either implement
an entire scripting language or embed an existing
one (like Lua) into the app.

2.3.3 Extensions
As noted in section 1.1, there will always be for-
malisms or levels of analysis that will not have ro-
bust support in an app. Normally, this pushes users
who really need such support to either use another
app or revert to a more generic medium.

To try to tackle this issue, an app structured
like EWAN could be enriched with API’s to al-
low users to customize deeper parts of the app, as
shown in figure 5. Suppose that a user is a se-
manticist who has designed a new semantic pars-
ing formalism, and wants to be able to annotate

Figure 5: A high-level representation of EWAN’s API
layers and how UI and business logic layers could be
extended if extension functions at the DB and business
logic layers were made.

texts with it. This would require the creation of at
least a new UI. If the user is comfortable with writ-
ing JavaScript, the user could use these extension
API’s to implement support for their own formal-
ism, provided these extension API’s are powerful
and approachable enough for use by novice pro-
grammers. The user could then not only benefit
themselves, but also share the extension with the
community.

If this were done well, a major problem driv-
ing the continued fragmentation of the LD app
landscape would be solved, and the LD commu-
nity could perhaps begin to converge on a common
foundation for common tasks in LD.

3 Conclusion

Because of the economic conditions that are en-
demic to software development in language docu-
mentation, app developers cannot reasonably hope
to succeed by taking software development ap-
proaches unmodified from industry, where devel-
oper labor is much more abundant. We have ar-
gued these economic conditions are the major rea-
son why LD apps have not realized their full po-
tential, and that the way to solve this problem is
to be selective in the tools that are used in mak-
ing LD apps. We have shown that choice of tools
does indeed affect how productive developers can
be, as demonstrated by our experience recreating
a portion of the app ELAN.

It is as yet unclear whether our choices were
right—both our choices in which requirements to
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prioritize, and in which tools to use to address
those requirements. Offline support seems secure
as a principal concern for LD apps, but perhaps
it might actually be the case that it is better to
choose a programming language that is easy to
learn rather than easy to maintain. What we hope
is clear, however, is that choice of tools can af-
fect developer productivity by orders of magni-
tude, and that the success of language documenta-
tion software will be decided by how foresighted
and creative its developers are in choosing tools
that will minimize their labor.
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Abstract
To reduce the annotation burden placed on lin-
guistic fieldworkers, freeing up time for deeper
linguistic analysis and descriptive work, the
language documentation community has been
working with machine learning researchers to
investigate what assistive role technology can
play, with promising early results. This pa-
per describes a number of potential follow-
up technical projects that we believe would be
worthwhile and straightforward to do. We pro-
vide examples of the annotation tasks for com-
puter scientists; descriptions of the technologi-
cal challenges involved and the estimated level
of complexity; and pointers to relevant litera-
ture. We hope providing a clear overview of
what the needs are and what annotation chal-
lenges exist will help facilitate the dialogue
and collaboration between computer scientists
and fieldwork linguists.

1 The Transcription and Annotation
Challenge

Language documentation projects typically yield
more data than can be reasonably annotated and
analyzed by the linguistic fieldworkers that collect
the data. For example, transcribing one hour of
audio recordings can take 40 hours or more (Du-
rantin et al., 2017), and potentially even longer
where the language is severely under-studied or
under-described. To reduce the annotation bur-
den placed on linguistic fieldworkers, freeing up
time for deeper linguistic analysis and descriptive
work, the language documentation community has
been working with machine learning (ML) re-
searchers to investigate what role technology can
play. As a result, today enterprising fieldwork lin-
guists can use a number of toolkits to help ac-
celerate the annotation process by automatically
proposing candidate transcriptions. Such toolkits
include CoEDL Elpis (Foley et al., 2018), Perse-
phone (Adams et al., 2018; Michaud et al., 2018),
and SPPAS (Bigi, 2015).

2 A Technological Development
Roadmap

These toolkits are already showing promising re-
sults across a number of languages. Arguably,
however, their current incarnation only scratches
the surface of what is technically possible, even
today. In this paper, we aim to describe a num-
ber of potential extensions to these systems, which
we believe would be reasonably straightforward
to implement, yet which should significantly im-
prove the quality and usefulness of the output.
Specifically, we look at the annotation steps in
the language documentation process beyond just
phonemic or orthographic transcription, and de-
scribe what assistive role technology can play for
many other steps in the language documentation
process, such as automatically proposing glossing
and translation candidates.

To be clear, this paper does not actually describe
complete systems that have been implemented.
Rather, our goal is to describe technical projects
that we believe would be worthwhile and straight-
forward to do. We provide examples of the anno-
tation tasks for computer scientists; descriptions
of the technological challenges involved and the
estimated level of complexity; and pointers to rel-
evant literature on both the computational and the
linguistic side. Our hope is that this overview of
what the needs are and what annotation challenges
exist will help facilitate the dialogue and collabo-
ration between computer scientists and fieldwork
linguists.

Our higher-level vision is for a toolkit that lets
fieldwork linguists process data at scale, with lim-
ited technical knowledge needed on the side of
the user. This toolkit should make it as easy as
possible to apply the most relevant well-known
techniques in natural language processing and ma-
chine learning to any language. This will likely
involve providing a simple, pre-configured graph-
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ical user interface; for the purposes of this paper,
however, we focus on the underlying technology.

For our purposes, we assume there is an au-
dio corpus where orthographic transcriptions are
available for at least some subset of the recordings.
If no orthographic transcriptions exist at all, then
there are a number of techniques around audio-
only corpus analysis that can be applied, such as
those explored in the Zero-Resource Speech Chal-
lenges (Dunbar et al., 2017), but those approaches
are outside of the scope of this paper.

We also assume that the corpus at hand was cre-
ated in a relatively ubiquitous tool for language
documentation — e.g. ELAN (Max Planck In-
stitute for Psycholinguistics; Brugman and Rus-
sel, 2004), Praat (Boersma and Weenink, 2001),
or Transcriber (DGA, 2014) — for which there
would be a ready-to-use conversion tool to con-
vert the corpus into a common format that can be
understood by the toolkit. Finally, we assume that
the linguist has access to a tool to create keyboards
for use on a desktop/laptop system, such as Key-
man (SIL), so an appropriate orthography can be
used, and that the linguist has access to an entry
input method for the International Phonetic Alpha-
bet (IPA).

Broadly, we see two areas where automation
toolkits for language documentation can make sig-
nificant headway still: automatic analysis of ex-
isting data in the corpus, and automatic process-
ing of unannotated data. To facilitate the discus-
sion below, Table 1 briefly walks through a rea-
sonably comprehensive set of annotations for an
audio recording. Specifically, for each word in our
Nafsan example utterance, Table 1 includes:

• a speaker label to indicate which of the speak-
ers in the recording spoke this word

• the orthographic form, or simply spelling, of
this word

• an interlinear gloss, which we will describe in
further detail below for readers who are unfa-
miliar with this practice

• a part-of-speech tag, e.g. using the conven-
tions from (Petrov et al., 2012)

• a phonemic transcription, e.g. in the Interna-
tional Phonetic Alphabet

In addition, our example annotation shows a

translation of the entire utterance into a single lan-
guage.1

3 Analysis of Existing Data

3.1 Text Analytics

In terms of automatic analysis of existing data,
there appears to be a significant amount of low-
hanging fruit around text-based analytics. Once a
language worker has put the effort into preparing
a corpus for use in a toolkit, by normalizing and
consolidating files, the data becomes suitable for
automatic analysis to obtain corpus-wide metrics.
For example, a toolkit could easily emit the fol-
lowing metrics on the orthographic transcriptions
in the corpus:

• the total number of words observed2

• the number of unique words observed

• a frequency-ranked wordlist, with word
counts

• the average number of words in each utter-
ance, and a histogram of words per utterance

These metrics can also be broken down by
speaker, if multiple speakers are present in the cor-
pus and speaker annotations are available in the
metadata. In that case, a toolkit could also au-
tomatically compute statistics such as pointwise
mutual information score for the usage of each
word by each speaker, or by speaker group, for
example if multiple varieties are represented in
the corpus. This may point to interesting inter-
speaker or inter-variety lexical frequency differ-
ences that merit further investigation. Per-speaker
lexical analyses could also be used to inform field-
work elicitation adjustments, e.g. when some
words were not elicited from a particular speaker
in the data set. For a literature review describing a
large number of automatic analysis options in this
space, see (Wieling and Nerbonne, 2015).

Frequency-ranked wordlists in particular can
also be helpful for quality assurance purposes:

1 Fieldwork linguists can, naturally, choose to create this
translation in any language. In our example, for expository
purposes, we used English.

2 We use ”words” here to mean specifically orthographic
units separated by whitespace in the target-language orthog-
raphy; if such separation is not part of the orthography, then
more complex approaches are needed, as is the case when
users wish to run these analyses based on lexical roots (after
morphological analysis).
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Speaker Spelling Gloss Part-of-Speech Phonemes
SPEAKER1 waak pig NOUN wak
SPEAKER1 nen that DET nan
SPEAKER1 i= 3SGREALISSUBJECT PRON i
SPEAKER1 p̃as chase VERB p̃as
SPEAKER1 =ir 3PLOBJECT PRON ir

Table 1: Annotations for an example recording in Nafsan (ISO 639 erk), DOI 10.4225/72/575C6E9CC9B6A.
Here, the English translation would be “That pig chased them.”

words at the bottom of the list may occur only
as one-off hapax legomena, but they may also be
misspelled versions of more frequent words. Re-
viewing a frequency-ranked list may help find or-
thographic inconsistencies in the data set. In fact,
an automatic toolkit could also emit additional in-
formation around annotation quality, such as:

• a frequency-ranked character list, with point-
ers to utterances that contain rarely used char-
acters (on the assumption that they may be
data entry mistakes)

• words that seem to be misspellings of another
word, based on edit distance and/or context

For datasets in languages where comprehensive,
clean wordlists are available, a transcription tool
with built-in spell-checking or word-completion
features would benefit users. If no clean wordlist
exists yet, a frequency-based wordlist is a good
start and can be human-curated. Going beyond
just orthographic words, finite-state technologies
may also be needed, especially for morphologi-
cally complex languages where stems may have
more variations than could ever be covered by a
simple wordlist, as is frequently described in the
literature; two relevant recent surveys are (Mager
et al., 2018; Littell et al., 2018).

If interlinear glosses are available in the corpus,
the toolkit could also easily emit a list of all words
and their glosses, highlighting words with multi-
ple glosses, as these may (but do not necessarily)
represent data entry inconsistencies; the same is
true for part-of-speech tags.

Where phoneme annotations are present, a
forced-alignment with the orthographic transcrip-
tion may be carried out to surface any outliers,
as these may represent either orthographic or
phonemic transcription errors (Jansche, 2014). Of
course, a phoneme frequency analysis could also
be produced and may yield interesting insights.

It should also be straightforward, though the
linguistic value of this would remain to be deter-

mined, to apply an unsupervised automatic mor-
phemic analyzer like Morfessor (Virpioja et al.,
2013).

3.2 Visualization

Language documentation toolkits will benefit
from integration with information visualization
tools. Visual data analysis can give a linguist a
general overview of the nature of a corpus, and
narrow in on data to support new, detailed insights.
For example, a broad view of a language collec-
tion can be given by visualizing metadata from
the corpus, representing the activity of the docu-
mentation process as a heatmap of the recording
dates/times/participants. Date and time visualiza-
tions could show patterns within recording loca-
tions and events, indicating how long it took to
create the corpus, and how old the data is.

Visualizations showing which time spans within
a corpus have been annotated on particular annota-
tion tiers would allow a linguist to quickly obtain
a sense of the state of transcription. A representa-
tion of transcription state showing what has been
transcribed, the types of existing transcriptions,
with summaries of metadata, will assist the lan-
guage worker to understand the shape of their par-
allel layered data, and develop well-constructed
corpora. This information could help prevent un-
expected data loss when moving from complex
multi-tier transcription to other modes of represen-
tation (Thieberger, 2016).

Detailed visualizations can also represent lin-
guistic features of the data, giving the linguist on-
demand access to explore a variety of phenom-
ena — e.g. using ANNIS (Krause and Zeldes,
2016) — such as compositional structure of lin-
guistic units (hierarchical data), associations be-
tween words (relational data) and alternative word
choices (Culy and Lyding, 2010).

Finally, a toolkit could output a high-level
overview of statistics and visualizations for a
given corpus as a landing page: a description
of the collection for online publishing, or to fa-
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cilitate discovery of the data within an archive
(Thieberger, 2016).

4 Extending Automatic Processing of
Unannotated Data

4.1 Audio Analysis

Generally, part of the data set at hand will be
missing at least some of the annotation layers in
our example above. At the most basic level, it
may not be known what parts of an audio col-
lection contain human speech, what parts con-
tain other types of sound (e.g. only nature or
car noise), or are even just quiet. A speech vs.
non-speech classifier, known as a voice activity
detector or VAD (Ramirez et al., 2007), should
be built into the toolkit. One open-source VAD
is the WebRTC Voice Activity Detector, with an
easy-to-use Python wrapper in (Wiseman, 2016).
Beyond voice activity detection, speaker identifi-
cation or diarization may also be necessary. In
this regard, the work recently done as part of
the First DIHARD Speech Diarization Challenge
(Church et al., 2018) is particularly relevant for
fieldwork recordings, which are challenging cor-
pora for these technologies.

Practically, entirely unannotated data sets are
rare: usually at least the language of the data set
is known. Where it isn’t, or where multiple lan-
guages exist within a given recording, it will also
be helpful to be able to identify the language spo-
ken in each part of the audio, based on the record-
ing alone, though this is a hard technical chal-
lenge (Gonzalez-Dominguez et al., 2014). As a
first step, multiple existing recognizers could be
executed, and their output could be analyzed to de-
termine which one produces the most likely tran-
script, using an approach like that by (Demšar,
2006).

4.2 Automatic Phonemic and Orthographic
Transcription

Once the location(s) and the language(s) of speech
within the target audio recordings are known, the
relevant audio fragments can be processed by
speech recognition systems such as Elpis (Foley
et al., 2018) or Persephone (Adams et al., 2018)
in order to produce automatic machine hypothe-
ses for phonemic and orthographic transcriptions.
Today’s Elpis and Persephone pipelines are ma-
turing, and are relatively complete packages, but

they could be made easier to use for people with-
out backgrounds in speech science.

4.2.1 Pronunciations
For example, Elpis currently requires the lin-
guist to provide a machine-readable grapheme-
to-phoneme mapping. However, these may al-
ready be available from current libraries (Deri and
Knight, 2016), derivable from existing databases
like Ausphon-Lexicon (Round, 2017), or present
in regional language collections such as the Aus-
tralian Pronunciation Lexicon (Estival et al., 2014)
and Sydney Speaks (CoEDL, 2018). These
resources could be integrated directly into the
toolkit. Elpis currently also offers no sup-
port for handling not-a-word tokens like numbers
(van Esch and Sproat, 2017), but this could be
supported using a relatively accessible grammar
framework where the number grammar can be in-
duced using a small number of examples (Gorman
and Sproat, 2016).

4.2.2 Text Corpora
Toolkits should also facilitate easy ingestion of ad-
ditional text corpora, which is particularly useful
for training large-vocabulary speech recognition
systems. For some endangered languages, text
corpora such as Bible translations or Wikipedia
datasets may be available to augment low-volume
data sets coming in from language documentation
work. Of course, the content of these sources
may not be ideal for use in training conversational
systems, but when faced with low-data situations,
even out-of-domain data tends to help. As more
text data becomes available, it would also be good
to sweep language model parameters (such as the
n-gram order) automatically on a development set
to achieve the best possible result.

4.2.3 Audio Quality Enhancement
In terms of audio quality, it’s worth pointing
out that audio recorded during fieldwork is of-
ten made in noisy conditions, with intrusive an-
imal and bird noises, environmental sounds, or
air-conditioners whirring. Noisy corpora may be-
come easier to process if automatic denoising and
speech enhancement techniques are integrated into
the pipeline. Loizou (2013) provides a recent
overview of this particular area.

4.2.4 Multilingual Models
To further improve the quality of the output
produced by the automatic speech recognition
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(ASR) systems within toolkits such as Elpis and
Persephone, multilingual acoustic models can be
trained on data sets from multiple languages
(Besacier et al., 2014; Toshniwal et al., 2018).
This could allow so-called zero-shot model usage,
meaning the application of these acoustic models
to new languages, without any training data at all
in the target language. Of course, the accuracy
of such an approach would depend on how sim-
ilar the target language is to the languages that
were included in the training data for the multilin-
gual model. Another approach is simply to reuse
a monolingual acoustic model from a similar lan-
guage. Either way, these models can be tailored to-
wards the target language as training data becomes
available through annotation.

4.2.5 Automatic Creation of Part-of-Speech
Tags and Interlinear Glosses

Beyond automatically generating hypotheses for
phonemic and orthographic transcriptions, it
would technically also be relatively straightfor-
ward to produce candidate part-of-speech tags or
interlinear glosses automatically. Both types of
tags tend to use a limited set of labels, as described
by e.g. the Universal Part-of-Speech Tagset doc-
umentation (Petrov et al., 2012) and the Leipzig
Glossing Rules (Comrie et al., 2008). Where
words occur without a part-of-speech tag or an in-
terlinear gloss in the corpus (for example, because
a linguist provided an orthographic transcription
but no tag, or because the orthographic transcrip-
tion is an automatically generated candidate), a tag
could be proposed automatically.

Most straightforwardly, this could be done by
re-using an existing tag for that word, if the word
was already tagged in another context. Where
multiple pre-existing interlinear glosses occur for
the same surface form, it would be possible to con-
textually resolve these homographs (Mazovetskiy
et al., 2018). For part-of-speech tagging, many
mature libraries exist, such as the Stanford Part-of-
Speech Tagger (Toutanova et al., 2003). However,
in both cases, given the limited amount of training
data available within small data sets, accuracy is
likely to be low, and it may be preferable to simply
highlight the existing set of tags for a given word
for a linguist to resolve. Surfacing these cases to
a linguist may even bring up an annotation quality
problem that can be fixed (if, in fact, there should
have been only one tag for this form).

Deriving interlinear glosses or part-of-speech

tags for new surface forms that have not previously
been observed could be significantly harder, de-
pending on the target language. Achieving reason-
able accuracy levels will require the use of mor-
phological analyzers in many languages, e.g. as
in (Arkhangeskiy et al., 2012). In polysynthetic
languages in particular, development of such ana-
lyzers would be a challenging task (Mager et al.,
2018; Littell et al., 2018), though see (Haspelmath,
2018) for a cautionary note on the term polysyn-
thetic.

4.2.6 Automatic Machine Translation (MT)
Many language documentation workflows involve
the translation of sentences from the target-
language corpus into some other language, such
as English, to make the content more broadly ac-
cessible. In effect, this creates a parallel cor-
pus which can be used for training automatic ma-
chine translation (MT) systems. These MT sys-
tems could then, in turn, be used to propose trans-
lation candidates for parts of the corpus that are
still lacking these translations: this may be be-
cause the linguist did not yet have time to trans-
late their transcriptions, or because only machine-
generated hypotheses are available for the tran-
scriptions (in which case the cascading-error ef-
fect typically causes accuracy of translations to be
lower). Such candidate translations would still re-
quire human post-editing, but for limited-domain
applications, machine translations may be suffi-
ciently accurate to accelerate the annotation pro-
cess. Of course, where other parallel corpora exist
(e.g. bilingual story books, or religious material
like the Bible), these can also be used as train-
ing data. In addition, any existing bilingual word
lexicons (like dictionaries) can also help in build-
ing machine translation systems, as in (Klemen-
tiev et al., 2012).

Many high-quality open-source machine trans-
lation toolkits already exist, e.g. SockEye (Hieber
et al., 2017), TensorFlow (Luong et al., 2017), and
Moses (Koehn et al., 2007). Phrase-based machine
translation still tends to yield better results than
neural machine translation (NMT) for small data
sets (Östling and Tiedemann, 2017), but multilin-
gual NMT models seem promising for cases where
similar languages exist that do have large amounts
of training data (Johnson et al., 2017; Gu et al.,
2018). Recent advances even allow the creation
of speech-to-translated-text models (Bansal et al.,
2018) and enable the use of existing translations
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to enhance ASR quality (Anastasopoulos and Chi-
ang, 2018).

5 Putting structured data and models to
work more broadly

A toolkit designed to facilitate transcription and
annotation efforts can benefit language workers
and language communities beyond just the an-
notation output. Structured data sets used in
these toolkits are ripe for conversion into formats
needed for various other tasks, such as dictionary
creation, e.g. Electronic Text Encoding and Inter-
change (TEI, 2018), or for dictionary publishing
pipelines, as in Yinarlingi (San and Luk, 2018).
Exported data could be formatted for import into
a range of dictionary/publishing applications such
as lexicon apps for mobile devices or ePub for-
mat (Gavrilis et al., 2013) for publishing on a wide
range of devices such as smartphones, tablets,
computers, or e-readers. Automatically generated
pronunciations, word definitions, part-of-speech
information and example sentences could easily
be included. For difficult work such as automatic
lemmatization, the output could be presented in a
simple interface for human verification/correction
before publication (Liang et al., 2014).

For languages to thrive in the digital domain,
some technologies are considered essential: a
standardized encoding; a standardized orthogra-
phy; and some basic digital language resources,
such as a corpus and a spell checker (Soria, 2018).
If toolkits make it easy to create structured data
sets and models for these languages, then these re-
sources can also be applied outside the fields of
language documentation, lexicography, and other
linguistic research fields.

For example, Australia has a vibrant
community-owned Indigenous media broad-
casting sector. For these users, there is potential
to re-use the ASR models to generate closed cap-
tions (subtitles) for the broadcast material. ASR
transcription and translation technologies could
be used to enrich the output of these Indigenous
community media broadcasters, which would
yield a significant improvement in the accessibil-
ity of broadcast content. Another option would be
to facilitate the creation of smartphone keyboards
with predictive text in the target languages, using
toolkits like Keyman (SIL).

Language archives like PARADISEC could also
benefit by applying these models, once created, on

existing content for the same language that may
have been contributed by other linguists, or that
may have come in through other avenues. It may
even be possible for these archives to offer web-
based services to language communities, e.g. to
allow them to use machine translation models for a
given language in a web-based interface. Linguists
could archive their models alongside their corpus;
for some collections, the published models may
inherit the same access permissions as the train-
ing data used in their creation, while some models
may be able to be published under less restrictive
conditions.

5.1 Data Set Availability

In general, to support the development of language
technologies like the ones we described earlier,
it is critical that software engineers are aware of,
and have access to data sets reflecting the diversity
of endangered languages. Already, data sets are
available for a range of languages, and in formats
suitable for ASR, text-to-speech synthesis (TTS)
and other tasks on the Open Speech and Language
Resources website (Povey, 2018). The addition
of ML-ready data sets for more endangered lan-
guages would enable software engineers, whose
primary concern may not be the language docu-
mentation process, to be involved in developing
and refining speech tools and algorithms. How-
ever, access protocols and licenses in place for ex-
isting data sets can prohibit experimental develop-
ment. Recording corpora specifically for the pur-
poses of enabling ML experiments would avoid
potentially lengthy negotiations of access rights.

6 Reaching more languages

Extending the reach of a toolkit beyond the (typ-
ically) few languages which are used when build-
ing and testing is critical. Applying technology to
more diverse use cases encourages a tool to be-
come more robust. With more use cases, a com-
munity of support can grow. A community of
users, contributors and developers around a toolkit
is important to encourage potential participants
(Foley, 2015), and to reduce the burden of support
on individual developers.

Being proactive in community discussions to
publicize the abilities of tools, providing in-
person access to training workshops, publishing
online support material and tutorials, and ensuring
tools have high-quality documentation for differ-
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ent levels of users, are all important (albeit labor-
intensive) methods of promoting and encouraging
language technology to reach more languages.

7 Conclusion

Speech and language technology toolkits, de-
signed specially for users without backgrounds
in speech science, have the potential for signifi-
cant impact for linguists and language communi-
ties globally. Existing toolkits can be enhanced
with richer feature sets, and connection with work-
flow processes, helping language documentation
workers. These toolkits enable language docu-
mentation workers to focus on deeper linguistic
research questions, by presenting the results of au-
tomated systems in ways that let language experts
easily verify and correct the hypotheses, yielding
annotation speed-ups. At the same time, mak-
ing these technologies and the structured data they
help produce more widely available would benefit
language communities in many ways.

Most of the technologies described here are
readily available and easily implemented, while
others are still highly experimental in their appli-
cation and potential benefits for Indigenous lan-
guages. With language technology as a whole
making rapid progress, and with an increasing
amount of dialogue between fieldwork linguists
and computer scientists, it is an exciting time to be
working on computational methods for language
documentation, with many advances that look to
be within reach for the near future.
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Abstract

We introduce ocreval, a port of the ISRI
OCR Evaluation Tools, now with Unicode
support. We describe how we upgraded the
ISRI OCR Evaluation Tools to support mod-
ern text processing tasks. ocreval supports
producing character-level and word-level ac-
curacy reports, supporting all characters rep-
resentable in the UTF-8 character encoding
scheme. In addition, we have implemented the
Unicode default word boundary specification
in order to support word-level accuracy reports
for a broad range of writing systems. We ar-
gue that character-level and word-level accu-
racy reports produce confusion matrices that
are useful for tasks beyond OCR evaluation—
including tasks supporting the study and com-
putational modeling of endangered languages.

1 Introduction

Optical Character Recognition (OCR) is the pro-
cess of detecting text in a image, such as a scan of
a page, and converting the written language into
a computer-friendly text format. While OCR is
well-established for majority languages (Tesseract
Langdata), the same cannot be said for endangered
languages (Hubert et al., 2016). When developers
create OCR models for low-resources languages,
they must have a tool for evaluating the accuracy
of their models. This will aid in making decisions
on how to model the language, and how to tweak
parameters in order to accurately recognize text in
that language, especially when labelled materials
are scarce.
A further complication encountered when de-

veloping OCR models for endangered languages
is that of orthography—a languagemay havemany
orthographies, or may not have a standardized or-
thography at all. And if any orthographies ex-
ist, they likely contain characters beyond the non-
accented Latin alphabet. IPA-influenced glottal

stop (ʔ) and schwa (ə) characters have a tendency
to sneak into new orthographies. Historically,
computer software provides poor support for char-
acters outside the range of those characters com-
monly found in Western European majority lan-
guage orthographies.
The ISRI OCR Evaluation Tools were last re-

leased in 1996 by the University of Nevada,
Las Vegas’s Information Science Research Insti-
tute (Rice and Nartker, 1996). Despite their age,
the tools continue to be useful to this day for
the task of evaluating new OCR models (Hubert
et al., 2016). Its accuracy and wordacc tools
are of particular utility. However, being some-
what dated, it has limited and awkward support
for non-European orthographies. Since the tools’
1996 release, the Unicode standard has gradually
improved support for non-European characters, in-
troducing many new scripts and characters. How-
ever, the ISRI OCR Evaluation Tools have not
been upgraded since.
In this paper, we present an updated version of

the ISRI OCR Evaluation Tools, which we named
ocreval. Our contributions include

• Port the ISRI OCR Evaluation Tools onto
modern macOS and Ubuntu Linux systems;

• Add support for UTF-8, enabling the analysis
of 1,112,064 unique characters;

• Implement the default Unicode word bound-
ary specification to evaluate word accuracy.

We describe in more depth what we have
changed and why; and we postulate how ocreval
can be used to support tasks unrelated to OCR
that may benefit people working in endangered
language study and tool development.
Before continuing, we would be remiss not to

mention OCRevalUAtion (Carrasco, 2014), an al-
ternative to the toolkit presented in this paper.
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2 How does ocreval extend the ISRI
OCR Evaluation Tools?

ocreval is a port of the ISRI OCR Evaluation
Tools to modern systems. This means that much
of the codebase and functionality is the same as
the codebase written in 1996; however, the origi-
nal code presents many incompatibilities with cur-
rent systems (usage of older programming lan-
guage features and reliance on out-of-date source
code libraries). When we downloaded the ISRI
OCR Evaluation Tools for the first time, its C pro-
gramming language source code would not com-
pile (translate source code into a usable applica-
tion). After a fewmodifications to the source code,
we were able to compile and run the ISRI OCR
Evaluation Tools on our systems.
The second problem is how text was represented

in the system. The ISRI OCR Evaluation Tools
were written in the early days of Unicode, when
Unicode was strictly a 16-bit character set. As
such, the ISRI OCR Evaluation Tools can handle
the first 65,536 characters defined in the Unicode
standard; however, as of Unicode 11.0 (Unicode
Consortium, 2018), there are 1,112,064 possible
characters total.1 Only 137,374 (12.33%) char-
acters are defined in the Unicode standard, with
the rest of the code space reserved for future use.
This means that the ISRI OCR Evaluation Tools
can only represent half of the characters defined
in the modern day Unicode standard. Among the
characters that are not representable in the ISRI
OCR Evaluation Tools are characters in recently
created writing systems, such as the Osage alpha-
bet (Everson et al., 2014), as well as historical
writing systems (Cuneiform, Linear B, Old Italic).
Thus, ocreval extends the ISRI OCR Evaluation
Tools by internally representing characters using
the UTF-32 character encoding form, allowing for
the analysis of characters from writing systems
both new and old.

2.1 UTF-8 support

The most significant hurdle remaining is how Uni-
code characters are input and output into ocreval.
As of October 2018, UTF-8 is the most common
character encoding scheme on the web, used for
92.4% of websites (W3Techs). This is not surpris-

1 There are 1,114,112 values defined in the Unicode 11.0
code space, however 2048 of these are surrogate characters
which cannot encode a character by themselves; hence, we
removed these characters from the total.

ing, as UTF-8 represents all 1,112,064 characters
possible in the Unicode standard in a way that is
backwards-compatible with 7-bit ASCII. The ISRI
OCR Evaluation Tools predate the widespread
adoption of UTF-8; as such, it assumes that any
text input is encoded in ISO-8859-1 or “Latin-1”
encoding. Latin-1, intended for use with West-
ern European languages, only encodes about 192
printable characters, most of which are Latin al-
phabetic characters; as such, Latin-1 is usually in-
adequate for encoding endangered and minority
languages. The ISRI OCR Evaluation Tools does
support 16-bit Unicode (65,536 characters), how-
ever, it uses an ad hoc format called “Extended
ASCII”. The ISRI OCR Evaluation Tools bundled
the uni2asc and asc2uni tools to convert to and
from the Extended ASCII format and the (now
outdated) 16-bit UCS-2 character encoding. Any-
body wishing to use characters outside the range of
Latin-1 would have to first use uni2asc before us-
ing their documents with any of the available tools.
If their original documents were encoded in UTF-
8, they would have to do two conversions: first,
convert from UTF-8 to UCS-2 using a tool such as
iconv; then, convert the UCS-2 file into Extended
ASCII using uni2asc.
In a timewhenUTF-8 exists and is readily avail-

able, we find that Extended ASCII is too much of
a hassle. As such, we modified the file reading
and writing routines used in all utilities provided
in ocreval to open files in the UTF-8 character
encoding scheme exclusively, obviating the need
to convert into an ad hoc format such as Extended
ASCII. Since all input and output is done in UTF-
8, we removed the now-redundant asc2uni and
uni2asc utility programs from ocreval.

2.2 Unicode word segmentation
One of the ISRI OCR Evaluation Tools’s most
useful utilities is wordacc. As its name im-
plies, wordacc computes the recognition accuracy
for entire words, rather than for single characters
alone. However, what constituted as a “word” was
rather narrowly defined in the previous version.
Originally, a “word” was a series of one or more
consecutive characters in the range of lowercase
ASCII characters (U+0061–U007A), or lowercase
Latin-1 characters (U+00DF–U+00F6, U+00F8–
U+00FF). Input would have to be converted to
lowercase before calculating word accuracy. Any
other characters were not considered to be part of a
word, and hence, would not appear in word accu-
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racy summaries or confusion matrices. This nar-
row definition of a “word” limits the usefulness of
wordacc, even for Latin-derived scripts.
To broaden its usefulness, we changed how

ocreval finds words in text by adopting Uni-
code’s default word boundary specification (Uni-
code Standard Annex #29). This specifies a rea-
sonable default for finding the boundaries between
words and other words, and between words and
non-word characters. Then, to find words proper,
we extract character sequences between bound-
aries that start with a “word-like” character, such
as letters, syllables, digits, and symbols that fre-
quently appear as parts of words. We also con-
sidered private-use characters to be “word-like”
characters so that if a language’s orthography is
not yet encoded or is poorly-supported in Unicode,
its characters can be represented using private-use
characters—which are set aside by the Unicode
standard as allocated code points to represent any
character the user requires.
A caveat is that this algorithm will not work for

all writing systems. Scripts like Thai, Lao, and
Khmer, which do not typically have any spaces
separating words, will not be handled properly. As
such, this is not a “one-size-fits-all” solution, and
may need to be tailored depending on the language.

2.3 Installing ocreval

In all cases, the user must have a basic understand-
ing of the command line interface of their com-
puter. However, we have tried to document and
streamline the process when possible.

ocreval can be installed on a modern macOS
system using the Homebrew package manager:

$ brew tap eddieantonio/eddieantonio
$ brew install ocreval

On Ubuntu Linux, the tools can be installed
from its source code. After downloading the
zip archive,2 install all system dependencies and
extract the contents of the source code archive.
Within the newly created directory, issue the make
command from the command line:

$ sudo apt update
$ sudo apt install build -essential \

libutf8proc -dev unzip
$ unzip ocreval -master.zip
$ cd ocreval -master/
$ make
$ sudo make install

2 https://github.com/eddieantonio/ocreval/
archive/master.zip

ocreval can also be installed on Windows 10
within the Ubuntu app, obtainable in the Microsoft
app store. Copy the downloaded zip archive into
the Ubuntu subsystem, then follow the same steps
as the Ubuntu Linux install.

2.4 The importance of open source

Software is open source when its source code is
publicly-accessible, under a license that permits
anyone to make modifications and share the mod-
ifications with others. We have released ocreval
as open source for many reasons: it maximizes the
amount of people that can benefit from the tool
by making it freely-accessible; hosting the soft-
ware on the collaborative coding platform GitHub
allows for people around the world to share en-
hancements to ocreval for everybody’s benefit;
and the ISRI OCR Evaluation Tools were origi-
nally released as open source.

ocreval is maintained on GitHub at https:
//github.com/eddieantonio/ocreval. On
GitHub, changes to the source code are transparent
and publicly-visible. Contributions are welcome
in the form of issue reports and pull requests.
Issue reports alert us to any bugs or inadequacies
found in the currently published version of the soft-
ware; pull requests allow volunteers to write sug-
gested source code enhancements to share with the
rest of the community. Creating an issue report or
a pull request both require a GitHub account. We
welcome anyone who wants to contribute to join
in; no contribution is too small!
The ISRI OCR Evaluation Tools were released

under an open source licence. The significance
of this cannot be overstated. If the original
source code was not available on (the now defunct)
Google Code repository, this paper would not have
been possible. As such, our contributions are also
released under an open source license, in the hopes
that it may also be useful in 20 years time.

3 How can ocreval help endangered
languages?

Hubert et al. (2016) have already used ocreval to
evaluate the accuracy of OCRmodels for Northern
Haida, a critically-endangered language spoken in
Western Canada. Unicode support was integral to
representing and evaluating the idiosyncratic or-
thography specific to the corpus in question (which
differs from modern-day Haida orthographies).
Previously, we mentioned that among the ISRI
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OCR Evaluation Tools’ most useful utilities are
accuracy and wordacc. We see these utilities in
ocreval to be much more general-purpose tools,
not only limited to the evaluation of OCR output.
Fundamentally, these tools compare two text files,
producing a report of which character sequences
are misclassified or “confused” for other charac-
ter sequences. This concept is useful beyond the
evaluation of OCR models.

One possible non-OCR application could be to
study language change. Parallel texts—whether
it be prose, or a word list—could be fed into
accuracy. One part of the input pair would be
representative of language spoken or written in the
modern day, and the other part of the input would
be a historical example, reconstructed text, or text
from a distinct dialect. accuracy will then pro-
duce minimal “confusions”, or sequences of com-
monly misclassified sequences. Since accuracy
prints statistics for how often a confusion is found,
accuracy inadvertently becomes a tool for re-
porting systematic changes, along with how often
the effect is attested. Preliminary work by Arppe
et al. (2018) used ocreval to compare Proto-
Algonquian to contemporary Plains Cree. Us-
ing an extensive database with over ten thousand
pairings of morphologically simple and complex
word stems—mapping each modern Cree word
form with the corresponding reconstructed Proto-
Algonquian form—they found that the contents of
the confusion matrix matched quite closely with
the posited historical sound change rules. In addi-
tion, the confusion matrix can be used to quantify
how often a particular rule applies in the overall
Cree vocabulary. The benefit of ocreval’s added
Unicode support facilitates this use case, as sound
change rules are hardly ever representable in only
Latin-1 characters.

Lastly, throughout this paper we have made the
assumption that corpora are encoded in UTF-8—
thus, using ocreval should be straightforward.
However, this is not always the case for minor-
ity language resources, even if they are encoded
digitally. One way minority language texts may
have been encoded is by “font-encoding” or “font-
hacking”. This is a specially-designed font over-
rides the display of existing code points, as op-
posed to using existing Unicode code points as-
signed for that particular orthography. This may be
because the font was defined for pre-Unicode sys-
tems, or because Unicode lacked appropriate char-

acter assignments at the development of said font.
For example, in place of the ordinary character for
“©”, the font will render “ǧ”, and in place of “¬”,
the font will render “ĺ”. For these cases, ocreval
alone is insufficient; an external tool must be used
such as convertextract (Pine and Turin, 2018).

4 Conclusion

We presented ocreval, an updated version of
the ISRI OCR Evaluation Tools. ocreval pro-
vides a suite of tools for evaluating the accuracy
of optical character recognition (OCR) models—
however, we postulate that the evaluation tools can
be generalized to support other tasks. Our contri-
butions include porting the old codebase such that
it works on modern systems; adding support for
the ubiquitous UTF-8 character encoding scheme,
as well internally representing characters using the
full Unicode code space; and the implementation
of the default Unicode word boundary specifica-
tion, which facilitates finding words in a variety
of non-Latin texts. We released ocreval online
as open-source software, with the intent to make
our work freely-accessible, as well as to encourage
contributions from the language technology com-
munity at large.
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"CTUSBDU
In the context of the ongoing AGGREGA-
TION project concerned with inferring gram-
mars from interlinear glossed text, we explore
the integration of morphological patterns ex-
tracted from IGT data with inferred syntac-
tic properties in the context of creating im-
plemented linguistic grammars. We present
a case study of Chintang, in which we put em-
phasis on evaluating the accuracy of these pre-
dictions by using them to generate a grammar
and parse running text. Our coverage over the
corpus is low because the lexicon produced by
our system only includes intransitive and tran-
sitive verbs and nouns, but it outperforms an
expert-built, oracle grammar of similar scope.

� *OUSPEVDUJPO
Machine-readable grammars are useful for lin-
guistic hypothesis testing via parsing and tree-
banking (selecting the best parse for each sen-
tence) because they represent internally coherent
models and can be explored automatically (Ben-
der et al., 2011, 2012a; Fokkens, 2014; Müller,
1999, 2016). Multilingual grammar engineering
frameworks such as CoreGram (Müller, 2015) and
the LinGO Grammar Matrix (Bender et al., 2002,
2010) facilitate the development of machine-
readable grammars by providing shared analyses,
but still require significant human effort to select
the appropriate analyses for a given language. To
partially automate this process, the AGGREGA-
TION project takes advantage of the stored anal-
yses in the Grammar Matrix and the linguistic
information encoded in Interlinear Glossed Text
(IGT). While at this stage the project efforts are
mostly experimental in nature and focus on evalu-
ating grammars obtained in this way, there already
have been successful collaborations with docu-
mentary linguists which in at least one case led

∗The first two authors made equal contribution.

to insights into the language’s morphological pat-
terns (Zamaraeva et al., 2017).
The IGT data format, widely used by linguists,

is well suited to inference tasks because it features
detailed morpheme-by-morpheme annotation and
translations to high-resource languages (Xia and
Lewis, 2007; Bender et al., 2013). However, the
inference processes required are heterogeneous.
On the morphological side, an inference system
identifies position and inflectional classes. On the
syntactic side, an inference system uses syntac-
tic generalizations to identify broad characteristics
and defines lexical classes according to syntactic
properties. The challenge we address here is in in-
tegrating the two. In this paper, we integrate a sys-
tem that identifies morphological patterns in IGT
data with one that predicts syntactic properties to
define lexical classes that encode both morpholog-
ical and syntactic features. We evaluate by repli-
cating the case study of Bender et al. (2014), in
which they automatically produced separate gram-
mar fragments based on morphotactic and syntac-
tic information and evaluated their system on a
corpus of Chintang. We compare their results to
our integrated system which includes both mor-
photactic and syntactic properties.1

� $IJOUBOH
Chintang (ISO639-3: ctn) is a Sino-Tibetan lan-
guage spoken by ∼5000 people in Nepal (Bickel
et al., 2010; Schikowski et al., 2015). Here we
summarize the characteristics of the language that
are directly relevant to this case study.
The relative order of the verb and its core ar-

guments (hereafter ‘word order’) in Chintang is
described as free by Schikowski et al. (2015), in
that all verb and argument permutations are valid

1Our code and sample data are available here:
?iiTb,ff;BiXHBM;Xr�b?BM;iQMX2/mf�;;f`2T`Qf
+QKTmi2Hj@+iM.
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Tool Task
SIL Toolbox Export original IGT data to plain text
Xigt Convert data into a robust data model with associated processing package
INTENT Enrich the data: add phrase structure, POS tags to translation line

and project to source language line
*OGFSFODF DPEF $SFBUF HSBNNBS TQFDJ˳DBUJPO� $BTF TZTUFN DBTF GSBNFT PG WFSCT
.0. $SFBUF HSBNNBS TQFDJ˳DBUJPO� *O˴FDUJPO BOE QPTJUJPO DMBTTFT
Grammar Matrix Create grammar on the basis of specifications
LKB Run the grammar on held-out sentences
(BM+` ib/#UV) Treebank: Inspect the parses for correctness

Table 1: AGGREGATION pipeline, CPME indicates this paper’s contribution

in the language, with the felicity of these combi-
nations being governed primarily by information
structure. Although Schikowski et al. (2015) note
that no detailed analysis has been carried out re-
garding what other factors condition word order,
they say that SV, APV and AGTV are the most
frequent orders that they observe.2 Dropping of
core arguments is also common in the language
(Schikowski et al., 2015).
The case system follows an ergative-absolutive

pattern, with some exceptions (Stoll and Bickel,
2012; Schikowski et al., 2015). In ergative-
absolutive languages, the subject of an intransi-
tive verb has the same case marking as the most
patient-like argument of a transitive verb, typi-
cally referred to as absolutive. The most agent-
like argument of a transitive verb has a distinct
case marking, usually called ergative. In Chin-
tang, ergative case is marked with an overt marker
while absolutive is zero-marked. A number of
exceptions to the ergative-absolutive pattern arise
due to valence changing operations (such as re-
flexive and benefactive). Other exceptions include
variable ergative marking on first and second per-
son pronouns and an overt absolutive marker on
the pronoun TB� ‘who’.3
Chintang’s flexible word order, scarcity of

overt case marking, and frequent argument drop-
ping introduce challenges to grammar inference.
First, the variety of phrase structure rules required
to accommodate free word order in addition to
argument optionally introduces potential for am-
biguity to any implemented grammar. In some
cases, this ambiguity is legitimate (in that multi-
ple parses map to multiple semantic readings), but
in other cases it may be an indication of under-

2S=subject, P=patient, G=goal, T=theme, A=agent
3For a much more detailed account of the case frame for

various verb types, see Schikowski et al. 2015.

constrained rules. Second, the lack of overt ab-
solutive case marking in Chintang, together with
common pronoun dropping, results in relatively
few overt case morphemes in the corpus for a syn-
tactic inference script to use.

� "((3&("5*0/

The AGGREGATION project4 is dedicated to au-
tomating the creation of grammars from IGT.5 Ta-
ble 1 presents all the tools involved in the pipeline,
with information on which task each performs.
We elaborate on the pieces of the pipeline below
and encourage the reader to refer back to this table
as needed to track what each component is.
As part of the AGGREGATION project, Ben-

der et al. (2014) present the first end-to-end study
of grammar inference from IGT by extracting
broad syntactic properties (namely, word order,
case system and case frame) and morphological
patterns and testing the coverage of the result-
ing grammars on held out data. They used the
methodology of Bender et al. (2013) for syntac-
tic inference and Wax (2014) for morphological
inference. However, they left integrating the two
and creating grammars which benefit from both
types of information to future work.
Like Bender et al. (2014), we take advantage of

the Grammar Matrix customization system (Ben-
der et al., 2002, 2010), which creates precision
grammars that emphasize syntactically accurate
coverage and attempt to minimize ambiguity. It
uses stored analysis for particular phenomena to

4?iiT,ff/2TibXr�b?BM;iQMX2/mfmr+Hf
�;;`2;�iBQMf

5We are aware of one project with similar goals: Type-
Gram (see e.g. Hellan and Beermann, 2014), couched in
HPSG as well. Our pipeline places fewer expectations on
the IGT annotation, inferring phrase structure, part of speech,
and valence automatically.
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create a grammar based on a user’s specifica-
tion of linguistic properties. These specifications
are recorded in a ‘choices file’. We follow the
methodology of Bender et al. (2014) of formatting
the output of our inference systems as a choices
file, so that it can be directly input to the Grammar
Matrix for grammar customization.
Unlike Bender et al. (2014), we take advantage

of the Xigt data model (Goodman et al., 2015).
This extensible and flexible format encodes the
information in IGT data in such a way that rela-
tions between bits of information, such as the con-
nection between a morpheme and its gloss, can
be easily identified. Data encoded with Xigt is
compatible with the INTENT system for enriching
IGT by parsing the English translation and pro-
jecting that information onto the source language
text (Georgi, 2016). Where Bender et al. (2014)
use the methodology of Xia and Lewis (2007),
in this work we use INTENT. We also use up-
dated, Xigt-compatible versions of morphological
and lexical class inference (Zamaraeva, 2016; Za-
maraeva et al., 2017) and case system inference
(Howell et al., 2017).

� .FUIPEPMPHZ

Our goal is to maximize the information that we
can learn about a language both morphologically
and syntactically in order to produce grammars
that parse strings with minimal ambiguity. We
present a methodology that analyzes morpholog-
ical and syntactic information independently and
then creates lexical classes that share the informa-
tion from both analyses.

��� .PSQIPUBDUJD JOGFSFODF XJUI .0.
MOM is a system which infers morphotactic
graphs from IGT. Developed originally by Wax
(2014) to infer position classes, it was updated
to work with the Xigt data model by Zamaraeva
(2016) and to infer inflectional classes by Zama-
raeva et al. (2017). Below we summarize the main
inference algorithm shared across these different
versions. As with most work using MOM and
the Grammar Matrix, we target the morpheme-
segmented line, and assume that the grammars
produced will eventually need to be paired with
a morphophonological analyzer to map to surface
spelling or pronunciation.
MOM starts by reading in IGT that has been

enriched with information about each morpheme,

-are

am

port

cap

-o

-io fac

-ere

Figure 1: Sample graph MOM will initially build on
the example training data consisting of Latin verbs BN�
BSF (‘to love’), QPSU�BSF (‘to carry’), QPSU�P (‘I carry’),
DBQ�JP (‘I take’), GBD�JP (‘I do’), and GBD�FSF (‘to do’).

-are, -o

am, port

-ere, -io

cap, fac

Figure 2: Sample MOM output, after compressing the
graph in Figure 1 with a 50% overlap value.

including a part of speech (POS) tag of the word
it belongs to as well as whether it is an affix or
a stem. Then MOM iterates over the items with
the relevant POS tag and builds a graph where
nodes are stems and affixes while edges are in-
put relationships. For example, if MOM sees
the Latin verbs BN�BSF (‘to love’), QPSU�BSF (‘to
carry’), QPSU�P (‘I carry’), DBQ�JP (‘I take’), GBD�JP
(‘I do’), and GBD�FSF (‘to do’) in the training data,
it will create nodes and edges as depicted in Fig-
ure 1. Finally, after the original graph has been
constructed, MOM will recursively merge nodes
which have edge overlap above the threshold pro-
vided by the user (e.g. 50%, see Figure 2), in order
to discover position classes for affixes and inflec-
tional classes for stems.

��� $BTF BOE 7BMFODF *OGFSFODF
Whereas MOM creates lexical classes based on
morphotactics, the inference system described in
this section creates lexical classes for verbs based
on their valence in two steps: We first infer the
overall case system of the language and second in-
fer whether each verb in the training data is transi-
tive or intransitive. We then create lexical classes
that specify the argument structure and case re-
quirements on those arguments.
We begin by predicting the overall case sys-

tem, using the methodology developed by Bender
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et al. (2013) and updated by Howell et al. (2017).
We reimplement Bender et al.’s gram method,
which counts the case grams in the corpus and
uses a heuristic to assign nominative-accusative,
ergative-absolutive, split-ergative or none to the
language based on the relative frequencies of the
case grams. We apply one change to this system:
because the split-ergative prediction does not give
any information regarding the nature of the split
(e.g. whether it is split according to features of
nouns or verbs), we map the split-ergative (which
it predicts for Chintang) to ergative-absolutive.
To determine the transitivity of verbs in the cor-

pus, we take advantage of the English translation
in the IGT. The dataset, which has been partially
enriched by INTENT (Georgi, 2016),6 includes
parse trees and POS tags for the English trans-
lation. Furthermore, the Chintang words in the
dataset are annotated for part of speech by the
authors of the corpus. To infer transitivity using
this information, we first do a string comparison
between the gloss of the Chintang verb and each
word in the language line to identify the English
verb that it corresponds to. If no match is found,
for example the verb is glossed with IBWF, but the
English translation contains HFU instead, the verb
is skipped. However, if a match is found, we tra-
verse the English parse tree to check if the V is
sister to an NP. If so, it is classified as transitive,
otherwise it is classified as intransitive. We ex-
clude passive sentences from consideration; how-
ever, under this algorithm, verbs that take a ver-
bal complement are classified as intransitive. We
leave further fine-tuning in this respect to future
work. Finally, once we have the case system and
the transitivity for each verb, we assign the verb’s
case frame according to a heuristic specific to the
case system. In the case of ergative-absolutive, we
specify ergative case on the subject of transitive
verbs and absolutive on the subject of intransitive
verbs and object of transitive verbs.

��� &YUFOTJPOT UP .PSQIPMPHJDBM "OBMZTJT
We modified the MOM system by extending
the data structure that it expects as input with
fields for transitivity and case frame and by mak-
ing it check these fields every time it consid-
ers which lexical class to assign to an item (we
describe this process in more detail in §4.4).

6For this particular dataset, INTENT was not able to pro-
duce bilingual alignments. This means that we were not able
to take advantage of word to word mappings.

We added functionality so that MOM infers case
lexical rules for nouns. Next, we added func-
tions to collapse all homonym stems in each
class into one stem with a disjunctive predication
(e.g. stem CFLUJ, predication @ZPVOHFTU�TPO�PS�
ZPVOHFTU�NBMF�TJCMJOH@O@SFM).7 Furthermore, we
improved the way MOM is dealing with stems
that occur bare in the data. Previously, MOM
put all bare stems into a lexical class which could
not merge with inflecting classes later, even if the
same stem occurred with affixes in other portions
of the data. Our fixing this problem led to fewer
lexical classes in the grammar, which means bet-
ter coverage potential. Finally, we made neces-
sary additions to MOM’s output format so that all
relevant information for each lexical class, includ-
ing case features and transitivity values, would be
encoded into a valid choices file that can be cus-
tomized by the Grammar Matrix.

��� *OUFHSBUJOH *OGFSFODF 4ZTUFNT
We integrated the systems described in §4.2 and
§4.3 such that lexical types are defined accord-
ing to the output of both systems. We expect
our grammars produced in this fashion to outper-
form either of the kinds of grammars produced
by Bender et al. (2014), because our integrated
verb classes contain both morphological and va-
lence constraints, rather than leaving one of these
categories underspecified.
We run the syntactic inference system before

MOM, so that transitivity and case frame are in-
cluded in MOM’s input. While MOM builds lex-
ical classes based on morphology, it also checks
transitivity and case frame for compatibility be-
fore adding an item to a lexical class. Verbs for
which there is no case frame prediction are clas-
sified in a ‘dummy’ category, rather than being
thrown out in order to maximize the morphologi-
cal patterns that can be detected by MOM. That is,
we want to include these verbs in the graph during
the morphological inference process.8 However,
without constraints on their valence, their inclu-
sion in the final grammar would result in spurious
ambiguity. Therefore, we allow these verbs in the
grammar, but change their orthography to contain

7This follows the conventions of Minimal Recursion Se-
mantics, see Copestake et al. 2005 and Flickinger et al. 2014.

8As will be mentioned in §5.2.4, we also allow MOM to
merge together verbs with no valence information into lexi-
cal classes with valence constraints, based on morphological
patterns.
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Grammar spec Origin description
oracle Bender et al. 2012b Expert-constructed
baseline Bender et al. 2014 Full-form lexicon, free word order (WO), no case
mom-default-none Bender et al. 2014 MOM-inferred lexicon, free WO, no case
ff-auto-gram Bender et al. 2014 Full-form lexicon, V-final WO, erg-abs case system
integrated This paper MOM-inferred lexicon, case frames, free WO, erg-abs

Table 2: Grammars used in evaluation

a non-Chintang string, so that they are effectively
excluded from the working grammar unless they
were merged into a verb class with valid valence
constraints.

� $BTF 4UVEZ

So far we have described a methodology that ex-
tracts both syntactic and morphological informa-
tion from IGT data, and outputs this information
in a format compatible with the Grammar Ma-
trix customization system. Now we present a
case study of this system on a Chintang dataset,
described in §5.1. We describe our comparison
grammars as well as the output of our system
(§5.2) and grammar development and parsing pro-
cess (§5.3) before presenting the results in §6 and
the discussion in §7.

��� %BUBTFU

For our experiment, we use the same subset
of the Chintang Language Resource Program
(CLRP)9 corpus as Bender et al. (2014), which
contains 10862 instances of Interlinnear Glossed
Text. These IGT comprise narratives and other
recorded speech that were transcribed, translated
and glossed by the CLRP. Example (1) illustrates
the thorough glossing of IGT in this corpus. How-
ever, it is noteworthy, especially for the purposes
of inference, that syntactic characteristics that do
not correspond with an overt morpheme (such as
sg and abs) are not glossed in this data. We use
the same train (8863 IGT), dev (1069 IGT) and
test (930 IGT) splits as Bender et al. (2014).

(1) unisaŋa
u-nisa-ŋa
3sposs-younger.brother-erg.a

khatte
khatt-e
take-ind.pst

mo
mo
dem.down

kosiʔ
kosi-iʔ
river-loc

moba
mo-pe
dem.down-loc

‘The younger brother took it to the river.’ [ctn]
(Bickel et al., 2013)

9https://www.uzh.ch/clrp/

b2+iBQM4rQ`/@Q`/2`
rQ`/@Q`/2`47`22
?�b@/2ib4MQ
XXX
b2+iBQM4+�b2
+�b2@K�`FBM;42`;@�#b
2`;@�#b@2`;@+�b2@M�K242`;
2`;@�#b@�#b@+�b2@M�K24�#b

+�b2RnM�K24HQ+
+�b2knM�K24/�iXXX

XXX
p2`#RykNnp�H2M+24BMi`�Mb
p2`#RykNnbi2KknT`2/4n+`vnpn`2H
p2`#RykNnbi2KknQ`i?4`�ii
XXX
p2`#@T+enBMTmib4p2`#@T+R- p2`#RykN
p2`#@T+enH`iRnH`BRnQ`i?4@�
p2`#@T+enH`iRnH`BRnBM7H2+iBM;4v2b

Figure 3: Excerpts from a choices file

We use a version of the training portion of
the data that has been converted to the Xigt data
model. The converter skipped 169 IGT, resulting
in a slightly smaller training set than that used by
Bender et al. (2014). This dataset was enriched
with English parses and part of speech tags using
INTENT (Georgi, 2016).

��� (SBNNBS 4QFDJ˳DBUJPO
The output of the morphotactic and syntactic in-
ference scripts described earlier in this section is
encoded in a ‘choices file’, illustrated in Figure 3,
which is the suitable input to the Grammar Ma-
trix customization system (Bender et al., 2010).
In this subsection, we describe the choices files
we developed for the baseline, oracle and our in-
ference system, as well as the comparison choices
from the 2014 experiment.10

����� 0SBDMF $IPJDFT 'JMF
Our first point of comparison is a manually con-
structed ‘oracle’ choices file, from Bender et al.
10For this comparison, we regenerated the baseline and

the oracle grammars from their choices files. For mom-
default-none and ff-auto-gram we worked from the same
parsing results analyzed in Bender et al. 2014.
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2012b. This choices file was developed by im-
porting CLRP’s Toolbox lexicon and defining the
rest of the specifications by hand, based on lin-
guistic analysis. As a result, the grammar pro-
duced by this choices file is expected to have very
high precision, with moderate recall. It speci-
fies the word order as verb-final (corresponding
to the most frequent word orders observed by
Schikowski et al. (2015)) and the case system as
ergative-absolutive, and it defines both subject and
object dropping as possible for all verbs. It also
includes hand-specified lexical rules based on the
analysis in Schikowski 2012.
Because the Grammar Matrix only included

simple transitive and intransitive verbs at the time
this choices file was developed, only those two
classes were defined. Their case frames were
specified by hand such that the intransitive verb
class has an absolutive subject and the transitive
verb class has an ergative subject and an absolu-
tive object. Finally, because the Grammar Ma-
trix did not support adjectives, adverbs, and many
other lexical categories, the resulting grammar
is not expected to parse any sentence containing
those lexical categories. Conveniently, the limi-
tations of the grammar defined by Bender et al.
(2012b) make it a good comparison to the gram-
mar we are able to produce using only the infer-
ence described in this paper.11

����� #BTFMJOF $IPJDFT 'JMF
As a second point of comparison, we use a choices
file that is designed to create a working grammar
with a sufficient lexicon that is otherwise naïve
with respect to the particular grammatical char-
acteristics of Chintang. We take this choices file
from Bender et al. (2014), but make some modi-
fications. The lexicon was extracted according to
the methodology of Xia and Lewis (2007), defin-
ing bare bones classes for nouns, verbs and de-
terminers. Because the inference system we use
in the this paper does not consider determiners,
we removed them from the baseline choices file.
Finally, the baseline predicts free word order, no
case system and argument dropping for subjects
and objects of all verbs because these choices are
expected to result in the highest coverage (though
low precision) for any language.12

11We do still have to add some default choices to our in-
ferred grammar, as described in §5.2.4.
12It is incidental that these word order and argument

dropping predictions are arguably valid analyses for this

����� #FOEFS FU BM� 	����
 DIPJDFT ˳MFT
Our final comparison is to the results for the
choices files created by Bender et al. (2014)
that are most comparable to our present work.
We look at their mom-default-none and ff-auto-
gram grammars which represent the two types of
inference that we have integrated.
The mom-default-none choices file uses a lexi-

con produced by MOM and the default choices for
word order (free), case system (none), and argu-
ment optionality (all arguments are optional). The
ff-auto-gram uses a lexicon of full word forms,
as in the baseline but with case frames for each
verb as observed in the data. The word order (V-
final) and case system (ergative-absolutive) were
inferred using syntactic inference.

����� *OUFHSBUFE *OGFSFODF 0VUQVU
We produced the inferred choices file by extract-
ing the lexicon, case system and morphological
rules, as described in §4.1, §4.2 and §4.3. We ran
the inference system on training data, debugging
and selecting an overlap value by parsing the dev
data with the resulting grammars. Our system pre-
dicted ergative-absolutive case and a robust lexi-
con and set of morphological rules. We used the
default word order (free) and default argument op-
tionality choices (any verb can drop subject or ob-
ject) from Bender et al. 2014. We also added the
necessary choices for the ‘dummy verb’ category
described in §4.3.

$IPPTJOH UIF PWFSMBQ WBMVF We ran MOM with
10 overlap values from 0.1 to 1.0. Then we parsed
sentences from the development set to identify the
grammar that optimizes both coverage and ambi-
guity. For these data, that showed the optimum
overlap value to be 0.2.13 We inspected the dif-
ferences in coverage and verified that they fall
into three categories. First, some lexical entries
which originally lacked a valence frame (the in-
ference script was not able to assign one) success-
fully merged into lexical classes which did have a
valid valence frame.14 Second, some entries hap-
pened to merge into only an intransitive class in
one grammar but only into a transitive class in an-
other. Finally, upon merging into lexical classes,

language.
13The 0.1 grammar had marginally lower ambiguity (2.76

fewer parses on average), but it parsed two fewer sentences.
14We assume that if a verb without a known valence frame

has similar morphotactic possibilities as a verb with a known
valence frame, it has the same valence frame.
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lexical entries gained access to morphological pat-
terns which were unseen in the training data. This
happens with both noun and verb lexical entries.
For example, not all grammars that we produced
were able to successfully produce a parse tree for
(2), because they did not merge the stem TJM with
a class that is compatible with the prefix V�.

(2) u-
3sa-

sil
bite.and.pull.out

-u
-3p
-set
-destr.tr

-kV
-3p

-ce
-ind.npst -3nsp
‘They snatch and kill them’ [ctn] (Bickel
et al., 2013)

��� (SBNNBS DVTUPNJ[BUJPO BOE QBSTJOH
After producing the choices files, we used the
Grammar Matrix customization system15 to pro-
duce customized grammars. We loaded these into
the LKB parsing software (Copestake, 2002) and
used (BM+` ib/#UV) (Flickinger and Oepen, 1998)
to create stored profiles of syntactic and seman-
tic parses. We treebanked these parses using
(BM+` ib/#UV) to identify correct parses, or parses
that produce the desired semantic representation
for the sentence. In particular, we checked to
make sure that the predicate-argument structure
matched what was indicated in the gloss, but did
not require information such as negation, person
and number or tense and aspect (all morphologi-
cally marked in Chintang), as our system doesn’t
yet attempt to extract these.

� 3FTVMUT
To put the results of parsing the strings from Chin-
tang in context, we first describe the produced
grammars in terms of their size. Table 3 reports
the size of the lexicons and the number of affixes
of each grammar. The oracle grammar’s lexi-
con includes the imported Toolbox lexicon from
CLRP, so it includes many more stems than the
others. The baseline and ff-auto-gram lexicons
include full form lexical entries,16 while the gram-
mar produced by our integrated system has lex-
icons that include stems extracted from the train-
ing data. mom-default-none only did morpholog-
ical analysis on verbs; for nouns it includes full-
form entries. The oracle grammar has a number
of morphological rules for nouns and verbs that
15svn://lemur.ling.washington.edu/shared/matrix/trunk at

revision 41969
16Note that the ff-auto-gram grammar only included

verbs for which a case frame could be predicted.

were hand-crafted, while mom-default-none and
integrated’s lexical rules were extracted from the
training data.
The results are reported in Table 4. ‘Lexical

coverage’ is the number of sentences for which
the grammar could produce an analysis (via full
form lexical entry or morphological rules) for ev-
ery word form. These numbers are quite small
because there are no lexical entries for categories
other than nouns and verbs. ‘Parsed’ shows the
number of sentences in test data that received
some spanning syntactic analysis, and ‘correct’
the number of items for which there was a correct
parse, according to manual inspection and tree-
banking. Finally we report the number of read-
ings, which shows the degree of ambiguity in the
grammar. Our integrated system had the highest
coverage as well as the highest correct coverage,
but also had the most ambiguity.

� %JTDVTTJPO

We expect integrated to have broader cover-
age than ff-auto-gram and baseline because it
includes morphological rules allowing it to gen-
eralize to unseen entries. We also expect inte-
grated to have higher precision (a higher propor-
tion of correct parses) than mom-default-none be-
cause unlike mom-default-none, it integrates case
frames which can rule out spurious analyses. We
also expect it to have higher coverage than mom-
default-none because it includes inferred mor-
phological rules for nouns (in addition to verbs).
Though the absolute numbers are small, these pre-
dictions are borne out by the data in Table 4.
To get a better sense of the differences between

the systems, we performed an error analysis. We
looked at all the parsed items (not just the tree-
banked ones) to get a broader view into the be-
havior of the grammars. This section provides the
results of our analysis as well as some exploration
into the higher ambiguity found by integrated.

��� &SSPS "OBMZTJT
As expected (and as with the other grammars), the
parsing errors for integrated are due to either lex-
ical or syntactic failures. For 825 items, the parser
did not succeed in MFYJDBM BOBMZTJT. In principle,
this includes both lack of stem or affix forms and
failures due to the grammar’s inability to construct
the morphological pattern, even though all mor-
phemes are found in the grammar. We examined a
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Choices file # verb entries # noun entries # verb affixes # noun affixes
oracle 899 4750 233 36
baseline 3005 1719 0 0
ff-auto-gram 739 1724 0 0
mom-default-none 1177 1719 262 0
integrated 911 1755 220 76

Table 3: Amount of lexical information in each choices file

choices file lexical coverage (%) parsed (%) correct (%) readings
oracle 116 (12.5) 20 (2.2) 10 (1.1) 1.35
baseline * 38 (0.4) 15 (1.6) 8 (0.9) 27.67
ff-auto-gram 18 (1.9) 4 (0.4) 2 (0.2) 5.00
mom-default-none 39 (4.2) 16 (1.7) 3 (0.3) 10.81
integrated 105 (11.3) 32 (3.4) 15 (1.6) 91.56
* We report slightly different results for lexical coverage and average readings for the baseline
than Bender et al. (2014) because we removed determiners from the choices file.

Table 4: Results on 930 held-out sentences

sample of 50 such items and only found instances
of missing stems and affixes, and no failed com-
binatorics. The remaining 73 errors are accounted
for on the TZOUBDUJD MFWFM. These break into three
categories: (1) both a V/VP and an NP could be
formed, but the NP had a case marker incompat-
ible with the verb’s case frame (e.g. locative; 6
items of this kind total);17 (2) a sentence did not
contain a word which could be analyzed as a verb
by the grammar (only as a noun, e.g. a sentence
fragment; 23 total); (3) finally, the sentence was
complex, i.e., contained more than one verb. This
third category was the most common (44 total),
as the grammar does not include subordination or
coordination rules.
We also compared our results on the held-out

data to the baseline and the oracle grammars.
While integrated outperforms both baseline and
oracle, baseline and oracle parse some sen-
tences that integrated does not.

*OUFHSBUFE WT� PSBDMF Comparison between or-
acle and integrated yields 130 different results.
Of these, most are due to differences in lexical
analysis. In particular, there are 55 items which
fail due to lexical analysis in integrated but fail
due to syntactic analysis in oracle. In all of these
cases, our grammar lacked a lexical entry that the
oracle grammar had; this is expected as the oracle
lexicon is based on a different source. There are
38 items for which oracle cannot provide lexical

17What is missing here is a grammar rule that handles e.g.
locative NPs functioning as modifiers.

analysis and integrated can but fails at the syn-
tactic stage. Of these, most are missing stems and
affixes in the oracle grammar but for one item,
oracle is actually lacking the required affix or-
dering that integrated picks up from the training
data. In addition, there are 11 cases where oracle
fails at lexical analysis and integrated succeeds
at both lexical and syntactic analysis. In two of
those eleven cases, integrated outperforms or-
acle due to the robustness of the morphological
rules, not the lexicon. In contrast, there are 3
items at which integrated fails lexically and ora-
cle gives a parse, all due to lexicon differences. In
6 cases, oracle fails at the syntactic stage where
integrated succeeds. Of these, 1 was rejected in
treebanking,18 two items are true wins due to mor-
photactic inference for nouns; two are because or-
acle only has a noun entry for something which
integrated picked up as a verb, and finally one
is parsed by integrated because it admits head-
initial word orders while oracle insists on V-final.
In contrast, oracle can parse one item for which
integrated can perform lexical analysis but fails
to parse. The sentence is DPS DPS and oracle has
both a verb and a noun entry for the word DPS
while integrated does not.

*OUFHSBUFE WT� #BTFMJOF The difference between
integrated and baseline is mainly due to lexi-
cal coverage. The baseline grammar featuring

18If none of the parses have a structure and a semantic
representation that are meaningful with respect to the trans-
lation, all parses for the item are rejected.
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np
n
cuwa

vp
vp
vp
vp
vp
vp

mai-yuŋ-th-a-k-e

s
v

np
n
cuwa

v
v
v
v
v
v

mai-yuŋ-th-a-k-e

Figure 4: Analyses like the one above (for (3)) use
homonymous intransitive (left) and transitive verb en-
try with a dropped argument (right). Together with
the homonymous verb position classes, this produces
ambiguity.

full-form lexical entries can lexically analyze 6
items that integrated cannot, while integrated
analyzes 22 items that baseline cannot. Neither
wins at syntactic analysis.19

��� "NCJHVJUZ
integrated produces noticeably more trees per
sentence than either the oracle grammar or the
baseline grammar, on average (see ‘readings’ col-
umn in Table 4). The baseline’s low ambiguity is
not striking, because it only parses a few syntacti-
cally and morphologically simple sentences. Still,
on some items the baseline grammar produces
hundreds of trees. The oracle grammar clearly
has less ambiguity. The main reason for more
ambiguity in integrated is simple combinatorics.
We infer noun and verb inflectional and position
classes, and often end up with homophonous af-
fixes as well as homophonous transitive and in-
transitive entries for verbs. For example, the verb
ZVċ, meaning ‘sit’, ‘be’ or ‘squat’, is associated
with both a transitive and an intransitive entry in
integrated. Figure 4 illustrates two of the trees
that this grammar finds for (3).

(3) cuwa
water

mai-yuŋ-th-a-k-e
neg-be.there-neg-pst-ipfv-ind.pst

‘Was there water?”

These homophonous lexical resources combine
with the argument optionality rules, word order
19A few of these differences are due to the fact that base-

line includes pronouns and other word categories (such as
interjections) as ‘nouns’ in the lexicon. We built integrated
assuming only things marked as nouns go in. In future work,
we will include pronouns (but not interjections).

flexibility and the actual complexity of Chintang
morphotactics to create a large search space for
the parser.

��� 'VUVSF XPSL
The default setting in MOM is to produce mor-
phological rules which are optional. Further-
more, MOM does not yet infer non-inflecting lex-
ical rules. This means that uninflected forms are
passed through to the syntax without being associ-
ated with the morphosyntactic or morphosemantic
information that the zero in the paradigm actu-
ally reflects. In future work, we will explore how
to automatically posit such zero-marked rules,
including how to make sure that their position
classes are required, so that the grammar can prop-
erly differentiate ‘zero’ and ‘uninflected’.
We plan to extend our syntactic inference al-

gorithm to account for verbs with alternate or
‘quirky’ case frames. Another avenue that our
error analysis shows as particularly promising is
to handle complex clauses, as there are tools to
model coordination (Drellishak and Bender, 2005)
and subordination (Howell and Zamaraeva, 2018;
Zamaraeva et al., 2019) in the Grammar Matrix
framework.

� $PODMVTJPO

We have demonstrated the value of integrating
morphological and syntactic inference for auto-
matic grammar development. Although inferring
these properties is most easily handled separately,
we show that combining information about mor-
photactic and inflectional patterns with syntactic
properties such as transitivity improves coverage.
While this study looked at case and transitivity,
the benefits of creating lexical classes that encode
syntactic information alongside morphological in-
formation should generalize. This methodology
can be extended to other linguistic phenomena on
the morphosyntactic interface, such as agreement,
and the coverage of grammars can be further ex-
tended by expanding the lexical classes and clause
types that can be inferred from the syntax. In
the future, we would like to perform further, in-
depth studies in collaboration with documentary
linguists, for example to see if our system can help
refine the analysis of morphological classes in the
lexicon of the language in question and whether
a grammar fragment automatically produced this
way can be easily extended to broader coverage.
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Abstract

We approach the problem of expanding the
set of cognate relations with a sequence-to-
sequence NMT model. The language pair of
interest, Skolt Sami and North Sami, has too
limited a set of parallel data for an NMT model
as such. We solve this problem on the one
hand, by training the model with North Sami
cognates with other Uralic languages and, on
the other, by generating more synthetic train-
ing data with an SMT model. The cognates
found using our method are made publicly
available in the Online Dictionary of Uralic
Languages.

1 Introduction

Sami languages have received a fair share of in-
terest in purely linguistic study of cognate rela-
tions. Although various schools of Finno-Ugric
studies have postulated contrastive interpretations
of where the Sami languages should be located
within the language family, there is strong ev-
idence demonstrating regular sound correspon-
dence between Samic and Balto-Finnic, on the one
hand, and Samic and Mordvin, on the other. The
importance of this correspondence is accentuated
by the fact that the Samic might provide insight
for second syllable vowel quality, as not all Samic-
Mordvin vocabulary is attested in Balto-Finnic (cf.
Korhonen, 1981). The Sami languages themselves
(there are seven written languages) also exhibit
regular sound correspondence, even though cog-
nates, at times, may be opaque to the layman.
One token of cognate relation studies is the Álgu
database (Kotus, 2006), which contains a set of
inter-Sami cognates. Cognates have applicabil-
ity in NLP research for low-resource languages
as they can, for instance, be used to induce the
predicate-argument structures from bilingual vec-
tor spaces (Peirsman and Padó, 2010).

The main motivation for this work is to extend
the known cognate information available in the
Online Dictionary of Uralic Languages (Hämäläi-
nen and Rueter, 2018). This dictionary, at its cur-
rent stage, only has cognate relations recorded in
the Álgu database.

Dealing with true cognates in a non-attested hy-
pothetical proto-language presupposes adherence
to a set of sound correlations posited by a given
school of thought. Since Proto-Samic is one such
language, we have taken liberties to interpret the
term cognate in the context of this paper more
broadly, i.e. not only words that share the same
hypothesized origin in Proto-Samic are considered
cognates (hence forth: true cognates), but also
items that might be deemed loan words acquired
from another language at separate points in the
temporal-spatial dimensions. This more permis-
sive definition makes it possible to tackle the prob-
lem computationally easier given the limitation
imposed by the scarcity of linguistic resources.

Our approach does not presuppose a seman-
tic similarity of the meaning of the cognate can-
didates, but rather explores cognate possibilities
based on grapheme changes. The key idea is that
the system can learn what kinds of changes are
possible and typical for North Sami cognates with
other Uralic languages in general. Taking leverage
from this more general level knowledge, the model
can learn the cognate features between North Sami
and Skolt Sami more specifically.

We assimilate this problem with that of normal-
ization of historical spelling variants. On a higher
level, historical variation within one language can
be seen as discovering cognates of different tem-
poral forms of the language. Therefore, we want
to take the work done in that vein for the first time
in the context of cognate detection. Using NMT
(neural machine translation) on a character level
has been shown to be the single most accurate
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method in normalization by a recent study with
historical English (Hämäläinen et al., 2018).

In this paper, we use NMT in a similar character
level fashion for finding cognates. Furthermore,
due to the limited availability of training data, we
present an SMT (statistical machine translation)
method for generating more data to boost the per-
formance of the NMT model.

2 Related Work

Automatic identification of cognates has received
a fair share of interest in the past from different
methodological stand points. In this section, we
will go through some of these approaches.

Ciobanu and Dinu (2014) propose a method
based on orthographic alignment. This means a
character level alignment of cognate pairs. After
the alignment, the mismatches around the aligned
pairs are used as features for the machine learning
algorithm.

Another take on cognate detection is that of
Rama (2016). This approach employs Siamese
convolutional networks to learn phoneme level
representation and language relatedness of words.
They based the study on Swadesh lists and used
hand-written phonetic features and 1-hot encoding
for the phonetic representation.

Cognate detection has also been done by look-
ing at features such as semantics, phonetics and
regular sound correspondences (St. Arnaud et al.,
2017). Their approach implements a general
model and language specific models using support
vector machine (SVM).

Rama et al. (2017) present an unsupervised
method for cognate identification. The method
consists of extracting suitable cognate pairs with
normalized Levenshtein distance, aligning the
pairs and counting a point-wise mutual informa-
tion score for the aligned segments. New sets
of alignments are generated and the process of
aligning and scoring is repeated until there are no
changes in the average similarity score.

3 Finding Cognates

In this section, we describe our proposed approach
in finding cognates between North Sami and Skolt
Sami. We present the dataset used for the training
and an SMT approach in generating more training
data.

3.1 The Data

Our training data consists of Álgu (Kotus, 2006),
which is an etymological database of the Sami lan-
guages. From this database, we use all the cognate
relations recorded for North Sami to all the other
Finno-Ugric languages in the database. This pro-
duces a parallel dataset of North Sami words and
their cognates in other languages.

The North Sami to other languages parallel
dataset consists of 32905 parallel words, of which
2633 items represent the correlations between
North Sami and Skolt Sami.

We find cognates for nouns, adjectives, verbs
and adverbs recorded in the Giellatekno dictionar-
ies (Moshagen et al., 2013) for North Sami and
Skolt Sami. These dictionaries serve as an input
for the trained NMT model and for filtering the
output produced by the model.

3.2 The NMT Model

For the purpose of our research we use OpenNMT
(Klein et al., 2017) to train a character based NMT
model that will take a Skolt Sami word as its in-
put and produce a potential North Sami cognate as
its output. We use the default settings for Open-
NMT1.

We train a sequence to sequence model with the
list of known cognates in other languages as the
source data and their North Sami counterparts as
the target data. In this way, the system learns a
good representation of the target language, North
Sami, and can learn what kind of changes are
possible between cognates in general. Thus, the
model can learn additional information about cog-
nates that would not be present in the North Sami-
Skolt Sami parallel data.

In order to make the model adapt more to
the North Sami-Skolt Sami pair in particular, we
continue training the model with only the North
Sami-Skolt Sami parallel data for an additional
10 epochs. The idea behind this is to bring the
model closer to the language pair of interest in
this research, while still maintaining the additional
knowledge it has learned about cognates in general
from the larger dataset.

3.3 Using SMT to Generate More Data

Research in machine translation has shown that
generating more synthetic parallel data that can be

1Version from the project’s master branch on the 13 April
of 2018
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noisy in the source language end but is not noisy
in the target end, can improve the overall transla-
tions of an NMT model (Sennrich et al., 2015). In
light of this finding, we will try a similar idea in
our cognate detection task as well.

Due to the limited amount of North Sami-Skolt
Sami training data available, we use SMT instead
of NMT to train a model that will produce plausi-
ble but slightly irregular Skolt Sami cognates for
the word list of North Sami words obtained from
the Giellatekno dictionaries.

We use Moses (Koehn et al., 2007) baseline2 to
train a translation model to the opposite direction
of the NMT model with the same parallel data.
This means translating from North Sami to Skolt
Sami. We use the same parallel data as for the
NMT model, meaning that on the source side, we
have North Sami and on the target side we have all
the possible cognates in other languages. The par-
allel data is aligned with GIZA++ (Och and Ney,
2003).

Since we are training an SMT model, there are
two ways we can make the noisy target of all the
other languages resemble more Skolt Sami. One
is by using a language model. For this, we build
a 10-gram language model with KenLM (Heafield
et al., 2013) from Skolt Sami words recorded in
the Giellatekno dictionaries.

The other way of making the model more aware
of Skolt Sami in particular is to tune the SMT
model after the initial training. For the tuning, we
use the Skolt Sami-North Sami parallel data exclu-
sively so that the SMT model will go more towards
Skolt Sami when producing cognates.

We use the SMT model to translate all of the
words extracted from the North Sami dictionary
into Skolt Sami. This results in a parallel dataset
of real, existing North Sami words and words that
resemble Skolt Sami. We then use this data to
continue the training of the previously explained
NMT model for 10 additional epochs.

3.4 Using the NMT Models

We use both of the NMT models, i.e. the one with-
out SMT generated additional data and the one
with the data separately to assess the difference in
their performance. We feed in the extracted Skolt
Sami words from the dictionary and translate each
word to a North Sami word as it would look like if

2As described in
http://www.statmt.org/moses/?n=moses.baseline

there were a cognate for that word in North Sami.
The approach produces many non-words which

we filter out with the North Sami dictionary. The
resulting list of translated words that are actually
found in the North Sami dictionary are considered
to be potential cognates found by the method.

4 Results and Evaluation

In this section, we present the results of both of
the NMT models, the one without SMT generated
data and the one with generated data. The results
shown in Table 1 indicate that the model with the
additional SMT generated data outperformed the
other model. The evaluation is based on a 200 ran-
domly selected cognate pairs output by the mod-
els. These pairs have then been checked by an
expert linguist according to principles outlined in
(4.1).

NMT NMT + SMT
accuracy 67.5% 83%

Table 1: Percentage of correctly found cognates

Table 2 gives more insight on the number of
cognates found and how they are represented in
the original Álgu database. The results show
that while the models have poor performance in
finding the cognates in the training data, they
work well in extending the cognates outside of the
known cognate list.

NMT NMT + SMT
Same as in Álgu 75 61
North Sami word in
Álgu but no cognates
with Skolt Sami

211 226

North Sami word in
Álgu with other
Skolt Sami cognates

646 577

North Sami word not
in Álgu

848 936

Cognates found in total 1780 1800

Table 2: Distribution of cognates in relation to Álgu

As one of the purposes of our work is to help
evaluate and develop etymological research, we
will conduct a more qualitative analysis of the cor-
rectly and incorrectly identified cognates for the
better working model, i.e. the one with SMT gen-
erated data. This means that the developers should
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be aware not only of the comparative-linguistic
rules etymologists use when assessing the regular-
ity of cognate candidates but semantics as well.

In an introduction to Samic language history
(Korhonen, 1981: 110–114), the proto-language
is divided into 4 separate phases. The first phase
involves vowel changes in the first and second syl-
lables (ä–e » e–e

ˆ
, u–e » o

ˆ
–e
ˆ

, e–ä » e–ȧ, i–e » e
ˆ

–e
ˆ

,
etc.) followed by vowel rotation in the first sylla-
ble dependent on the quality of the second-syllable
vowel (e–e » e–e

ˆ
but e–ä » ε–ȧ). The second phase

entails the loss of quantitative distinction for first-
syllable vowels such that high vowels are normal-
ized as short, and non-high first-syllable vowels
are normally long (e–e

ˆ
» ē–e

ˆ
, ε–ȧ » ε̄–ē, etc.).

The third phase involves a slight vowel shift in the
first syllable and vowel split in the second. And
finally, the fourth phase introduces diphthongiza-
tion of non-high vowels in the first syllable (ē–e

ˆ
»

ie–e
ˆ

, ε̄–ē » eä–ē, etc.).
In Table 3, below, we provide an approxima-

tion of a few hypothesized sound changes for three
words that are attested in Balto-Finnic and Mord-
vin, alike. *käte ‘hand; arm’ has true cognates
in Finnish käsi, Northern Sami giehta, Skolt Sami
ǩiõtt, Erzya ked’ and Moksha käd’, *tule ‘fire’ is
represented by Finnish tuli, Northern Sami dolla,
Skolt Sami toll, and Mordvin tol, while *pesä
‘nest’ is attested in Finnish pesä, Northern Sami
beassi, Skolt Sami pie′ss, Erzya pize, and Moksha
piza. The Roman numerals in the table correspond
to four separate phases in Proto-Samic.

I II III IV
‘hand; arm’ käte kete

ˆ
kēte

ˆ
kiete

ˆ‘fire’ tule to
ˆ

le
ˆ

to
ˆ

le
ˆ

tole
ˆ‘nest’ pesä pεsȧ pε̄sē peäsē

Table 3: Illustration of some vowel correlations in 4
phases of Proto-Samic

In the evaluation, our attention was drawn to
the adherence of (143) items to accepted sound
correlations while there were (57) candidates that
failed in this respect (cf. Korhonen, 1981; Lehti-
ranta, 2001; Aikio, 2009). Irregular sound corre-
lation can be exemplified in the North Sami word
bierdna ’bear’ and its counterpart the Skolt Sami
word peä′rnn (the ′ prime indicates palatalization
in Skolt Sami orthography) ’bear cub’. The for-
mer appears to represent the word type found in
’hand’ North Sami giehta and Skolt Sami ǩiõtt,

whereas the latter represents the word type found
in ’nest’ North Sami beassi and Skolt Sami pie′ss
and ’swamp’ North Sami jeaggi and Skolt Sami
jeä′ǧǧ. Hence, on the basis of the North Sami
word bierdna ’bear’, one would posit a Skolt
Sami form *piõrnn, whereas the Skolt Sami word
peä′rnn ’bear cub’ would presuppose a North
Sami form *beardni. Both types have firm rep-
resentation in both languages, so it would seem
that these borrowings have entered the languages
at separate points in the spatio-temporal dimen-
sions.

4.1 Analysis of the Correct Cognates

Correct cognates were selected according to two
simples principles of similarity. On the one hand,
there was the principle of conceptual similarity in
their referential denotations (i.e., this refers to fu-
ture work in semantic relations). On the other
hand, a feasible cognate pair candidate should
demonstrate adherence or near adherence to ac-
cepted sound law theory. The question of adher-
ence versus near adherence indicated here can be
directed to concepts of sound law theory, where
conceivable irregularities may further be attributed
to points in spatio-temporal dimensions (i.e., when
and where a particular word was introduced into
the lexica of the two languages involved in the in-
vestigation).

In the investigation of 200 random cognate pair
candidates, 166 cognate pair candidates exhibited
conceptual similarity which in some instances sur-
passed what might have been discovered using a
bilingual dictionary. Of the 166 acceptable cog-
nate pairs 131 candidate pairs demonstrated regu-
lar correlation to received sound law theory.

Adherence to concepts of sound law theory can
be observed in the alignment of the North Sami
words čuoika ’mosquito’ and ad̄a ’marrow’ with
their Skolt Sami counterparts čuõškk and õõd̄, re-
spectively. Although these words may appear
opaque to the layman, and thus this alignment
might be deemed dubious at first, awareness of
cognate candidates in the Erzya Mordvin śeśke
’mosquito’ and ud′em ’marrow’ helps to alleviate
initial misgivings.

As may be observed above, North Sami fre-
quently has two-syllable words where Skolt Sami
attests to single-syllable words. This rela-
tive length correlation between North Sami and
Skolt Sami is described through measurement in
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prosodic feet (cf. Koponen and Rueter, 2016).
While North Sami exhibits retention of the the-
oretical stem-final vowel in two-syllable words,
Skolt Sami appears to have lost it. In fact, stem-
final vowels in Skolt Sami are symptomatic of
proper nouns and participles (derivations). In
contrast, two-syllable words with consonant-final
stems appear in both North Sami and Skolt Sami,
which means we can expect a number of basic
verbs attesting to two-syllable infinitives (North
Sami bidjat ’put’ and Skolt Sami piijjâd) and
contract-stem nouns (North Sami guoppar and
Skolt Sami kuõbbâr ’mushroom’). Upon inspec-
tion of longer words, it will appear that Skolt Sami
words are at least one syllable shorter than their
cognates in North Sami, which can be attributed
to variation in foot development.

Cognate word correlations between North Sami
and Skolt Sami can be approached by count-
ing syllables in the lemmas (dictionary forms).
Through this approach, we can attribute some
word lengths automatically to parts-of-speech, i.e.
there is only one single-syllable verb in Skolt Sami
lee′d ’be’, and it correlates to a single-syllable
verb in North Sami leat. Other verbs are therefore
two or more syllables in length in both languages.
While two-syllable verbs in North Sami correlate
with two-syllable verbs in Skolt Sami, multiple-
syllable verbs in North Sami usually correlate to
Skolt Sami counterparts in an X<=>X-1 relation-
ship (number of syllables in the language forms,
repectively), where North Sami is one orthograph-
ical syllable longer.

Short word pairs demonstrate a clear correlation
between two-syllable base words in North Sami
and single-syllable base words in Skolt Sami,
which with the exception of 4 words were all
nouns (54 all told). The high concentration of
noun attestation for single-syllable cognate nouns
in the two languages of investigation is counter-
balanced by the representation of verbs in other
word-length correlation groups.

Cognate pairs where both North Sami and Skolt
Sami attested to two-syllable lemmas were over-
represented by verbs. There were 47 verbs, 22
nouns, 10 adjectives and 1 adverb. This result is
symptomatic of lemma-based research. Surpris-
ingly enough, however, the three-to-two syllable
correlation between North Sami and Skolt Sami
also showed a similar representation: verbs (13),
nouns (2) and adverbs (1).

There was one attested correlation for a 5-
syllable word eŋgelasgiella ’English language’ in
North Sami and its 3-syllable counterpart in Skolt
Sami eŋgglõsǩiõll. Since we are looking at a com-
pound word with 3-to-2 and 2-to-1 correlations,
we can assume that our model is recognizing indi-
vidual adjacent segments within a larger unit.

Correct cognates do not necessarily require et-
ymologically identical source forms or structure.
The recognized cognate pairs represent both re-
cent loan words or possible irregularities in sound
law theory (35) and presumably older mutual lex-
icon (131) (see 4.2, below). They also attest to
differed structure and length (i.e., this may also
include derivation and compounding). While a
majority of the cognate candidate pairs linked
words sharing the same derivational level, 11 rep-
resented instances of additional derivation in ei-
ther the North Sami or Skolt Sami word, and 3
recognized instances where one of the languages
was represented by a compound word.

4.2 Analysis of the Incorrect Cognates

Incorrect cognates often offer vital input for cog-
nate detection development. There are, of course,
words pairs that diverge in regard to both accepted
sound law theory and semantic cohesion. These
pairs have not yet been applied to development. In
contrast, word pairs that appear to adhere to sound
law theory yet are not matched semantically might
be regarded as false friends. These pairs can be
potentially useful in further development.

Of 34 semantically non-feasible candidates, 12
stood out as false friends. One such example pair
is observed in the North Sami álgu ’beginning’
and the Skolt Sami älgg ’piece of firewood’. These
two words, it should be noted, can be associated
with the Finnish cognates alku ’beginning’ and
halko ’piece of split firewood [NB! there is a loss
of the word initial h]’, respectively. Since the theo-
retically expected vowel equivalent of the first syl-
lable a in Finnish is uo and ue in North Sami and
Skolt Sami, respectively, we might assume that
neither word comes from a mutual Samic-Finnic
proto-language.

We do not know to what extent random selec-
tion has affected our results. Had the first North
Sami noun álgu been replaced with its paradig-
matic verb álgit ’begin’, the Skolt Sami ä′lǧǧed,
also translated as ’begin’, would have shown di-
rect correlation for á and ä in North Sami and
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Skolt Sami, respectively. The second noun, mean-
ing ’piece of split firewood’, is actually hálgu in
North Sami, which simply demonstrates h reten-
tion and the possible recognition problems faced
in the absence of semantic knowledge.

4.3 Summary of the Analyses

The cognate candidates were evaluated according
to two criteria: One query checked for concep-
tual similarity (correct vs incorrect), and the other
checked for regularity according to received sound
law theory. While the majority (65%) of the word
pairs evaluated were both conceptually similar and
correlated to received sound law theory, an addi-
tional 17% of the candidates represented irregular
sound correlation, as indicated by the figures 131
and 35 below, respectively.

Similar Dissimilar
Regular 131 12
Irregular 35 22

Table 4: Cognate candidate evaluation

The presence of an 11% negative score for both
sound law regularity and conceptual similarity in-
dicates an improvement requirement of at least
6% before the machine can be considered relevant
(95%). The 6% attestation of false friend discov-
ery, however, displays an already existing accu-
racy in our algorithm.

5 Conclusions and Future Work

In this paper, we have shown that using a
character-based NMT is a feasible way of expand-
ing a list of cognates by training the model mostly
on the cognate pairs for North Sami words in lan-
guages other than Skolt Sami. Furthermore, we
have shown that an SMT model can be used to
generate synthetic parallel data by pushing the
model more towards the direction of Skolt Sami
by introducing a Skolt Sami language model and
tuning the model with Skolt Sami - North Sami
parallel data.

In our evaluation, we have only considered the
best cognate produced by the NMT model with the
idea of one-to-one mapping. However, it is possi-
ble to make the NMT model output more than one
possible translation. In the future, we can conduct
more evaluation for a list of top candidates to see
whether the model is able to find more than one
cognate for a given word and whether the overall

recall can be improved for the words where the
top candidate has been rejected by the dictionary
check as a non-word.

We have currently limited our research in cog-
nates between Skolt Sami and North Sami where
the translation direction of the NMT model has
been towards North Sami. An interesting future
direction would be to change the translation direc-
tion. In addition to that, we are also interested in
trying this method out on other languages recorded
in the Álgu database.

We are also interested in conducting research
that is more linguistic in its nature based on the
cognate list produced in this paper. This will shed
more light in the current linguistic knowledge of
cognates in the Sami languages. The current re-
sults of the better working NMT model are re-
leased in the Online Dictionary for Uralic Lan-
guages3.
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Abstract
Communities of lesser resourced languages
like North Sámi benefit from language tools
such as spell checkers and grammar checkers
to improve literacy. Accurate error feedback
is dependent on well-tokenised input, but tra-
ditional tokenisation as shallow preprocessing
is inadequate to solve the challenges of real-
world language usage. We present an alterna-
tive where tokenisation remains ambiguous un-
til we have linguistic context information avail-
able. This lets us accurately detect sentence
boundaries, multiwords and compound error
detection. We describe a North Sámi grammar
checker with such a tokenisation system, and
show the results of its evaluation.

1 Introduction

Bilingual users frequently face bigger challenges
regarding literacy in the lesser used language than
in the majority language due to reduced access to
language arenas (Outakoski, 2013; Lindgren et al.,
2016). However, literacy and in particular writ-
ing is important in today’s society, both in social
contexts and when using a computer or a mobile
phone. Language tools such as spellcheckers and
grammar checkers therefore play an important role
in improving literacy and the quality of written text
in a language community.

North Sámi is spoken in Norway, Sweden and
Finland by approximately 25,700 speakers (Simons
and Fennig, 2018), and written in a number of in-
stitutions like the daily Sámi newspaper (Ávvir1), a
few Sámi journals, websites and social media of the
Sámi radio and TV (e.g. YleSápmi2). In addition,
the Sámi parliaments, the national governments,
and a Sámi university college produce North Sámi
text.

An open-source spellchecker for North Sámi has
been freely distributed since 2007 (Gaup et al.,

1https://avvir.no/ (accessed 2018-10-08)
2https://yle.fi/uutiset/osasto/sapmi/

(accessed 2018-10-08)

2006).3 However, a spellchecker is limited to look-
ing only at one word contexts. It can only de-
tect non-words, i.e. words that cannot be found
in the lexicon. A grammar checker, however, looks
at contexts beyond single words, and can correct
misspelled words that are in the lexicon, but are
wrong in the given context. In addition, a grammar
checker can detect grammatical and punctuation
errors.

A common error in North Sámi and other com-
pounding languages is to spell compound words as
separate words instead of one. The norm typically
requires them to be written as one word, with the
non-final components being in nominative or geni-
tive case if they are nouns. This reflects a difference
in meaning between two words written separately
and the same two words written as a compound.
Being able to detect and correct such compounding
errors is thus important for the language commu-
nity.

This paper presents and evaluates a grammar
checker framework that handles ambiguous tokeni-
sation, and uses that to detect compound errors, as
well as improve sentence boundary detection after
abbreviations and numeral expressions. The frame-
work is completely open source, and completely
rule-based. The evaluation is done manually, since
gold standards for North Sámi tokenisation have
not been developed prior to this work.

2 Background

The system we present is part of a full-scale gram-
mar checker (Wiechetek, 2017, 2012). Before this
work, there were no grammar checkers for the Sámi
languages although some grammar checker-like
work has been done in the language learning plat-
form Oahpa (Antonsen, 2012). However, there
have been several full-scale grammar checkers for

3 In addition to that, there are syntactic disambiguation
grammars, machine translators, dictionaries and a tagged
searchable online corpus.
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other Nordic languages, most of them implemented
in the rule-based framework Constraint Grammar
(CG). Lingsoft distributes grammar checkers for
the Scandinavian languages,4 some of which are or
have been integrated into MS Word; a stand-alone
grammar checker like Grammatifix (Arppe, 2000)
is also available from Lingsoft. Another widely
used, mostly rule-based and free/open-source sys-
tem is LanguageTool (Milkowski, 2010), though
this does not yet support any Nordic languages.
Other CG-based checkers are OrdRet (Bick, 2006)
and DanProof (Bick, 2015) for Danish.

2.1 Framework
The central tools used in our grammar checker are
finite state transducers (FST’s) and CG rules. CG
is a rule-based formalism for writing disambigua-
tion and syntactic annotation grammars (Karlsson,
1990; Karlsson et al., 1995). The vislcg3 implemen-
tation5 we use also allows for dependency annota-
tion. CG relies on a bottom-up analysis of running
text. Possible but unlikely analyses are discarded
step by step with the help of morpho-syntactic con-
text.

All components are compiled and built using the
Giella infrastructure (Moshagen et al., 2013). This
infrastructure helps linguists coordinate resource
development using common tools and a common ar-
chitecture. It also ensures a consistent build process
across languages, and makes it possible to propa-
gate new tools and technologies to all languages
within the infrastructure. That is, the progress de-
scribed in this paper is immediately available to all
languages in the Giella infrastructure, barring the
necessary linguistic work.

The North Sámi CG analysers take morpho-
logically ambiguous input, which is the output
from analysers compiled as FST’s. The source of
these analysers is written in the Xerox twolc6 and
lexc (Beesley and Karttunen, 2003) formalisms,
compiled and run with the free and open source
package HFST (Lindén et al., 2011).

We also rely on a recent addition to HFST, hfst-
pmatch (Hardwick et al., 2015) (inspired by Xerox
pmatch (Karttunen, 2011)) with the runtime tool
hfst-tokenise. Below we describe how this lets us

4http://www2.lingsoft.fi/doc/swegc/
errtypes.html (accessed 2018-10-08)

5http://visl.sdu.dk/constraint_grammar.
html (accessed 2018-10-08), also Bick and Didriksen (2015)

6Some languages in the Giella infrastructure describe their
morphophonology using Xfst rewrite rules; both twolc and
rewrite rules are supported by the Giella infrastructure.

analyse and tokenise in one step, using FST’s to
identify regular words, multiword expressions and
potential compound errors.

It should be noted that the choice of rule-based
technologies is not accidental. The complexity
of the languages we work with, and the general
sparsity of data, makes purely data-driven methods
inadequate. Additionally, rule-based work leads
to linguistic insights that feed back into our gen-
eral understanding of the grammar of the language.
We chose a Constraint Grammar rule-based system
since it is one we have long experience with, and
it has proven itself to be competitive both in high-
and low-resource scenarios. For example, Dan-
Proof (Bick, 2015, p.60) scores more than twice
that of Word2007 on the F1 measure (72.0% vs
30.1%) for Danish grammar checking. CG also
compares favourably to modern deep learning ap-
proaches, e.g. DanProof ’s F0.5 (weighting preci-
sion twice as much as recall) score is 80.2%, versus
the 72.0% reported by Grundkiewicz and Junczys-
Dowmunt (2018).

In addition, most current approaches rely very
much on large-scale manually annotated corpora,7

which do not exist for North Sámi. It makes sense
to reuse large already existing corpora for training
language tools. However, in the absence of these,
it is more economical to write grammars of hand-
written rules that annotate a corpus linguistically
and/or do error detection/correction. As no other
methods for developing error detection tools exist
for North Sámi or similar languages in compara-
ble situations (low-resourced in terms of annotated
corpus, weak literacy, higher literacy in the major-
ity languages), it is impossible for us to provide a
comparison with other technologies.

2.2 Motivation

This section describes some of the challenges
that lead to the development of our new grammar
checker modules.

A basic feature of a grammar checker is to cor-
rect spelling errors that would be missed by a spell
checker, that is, orthographically correct words that
are nevertheless wrong in the given context.

(1) Beroštupmi
interest

gáktegoarrun|gursii
costume.sewing|course.ILL

‘An interest in a costume sewing course’

7“Automatic grammatical error correction (GEC) progress
is limited by corpora available for developing and evaluating
systems.” (Tetreault et al., 2017, p.229)
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In the North Sámi norm, generally (nominal) com-
pounds are written as one word; it is an error to
insert a space at the compound border. Ex. (1)
marks the compound border with a pipe.

(2) *Beroštupmi gáktegoarrun gursii

If the components of a compound are separated
by a space as in ex. (2) (cf. the correct spelling
in ex (1)), the grammar checker should detect a
compound spacing error.

Compound errors can not be found by means of
a non-contextual spellchecker, since adjacent nom-
inals are not automatically compound errors. They
may also have a syntactic relation. Our lexicon
contains both the information that gáktegoarrun-
gursii would be a legal compound noun if written
as one word, and the information needed to say that
gáktegoarrun gursii may have a syntactic relation
between the words, that is, they are independent
tokens each with their own analysis.8 We there-
fore assume ambiguous tokenisation. In order to
decide which tokenisation is the correct one, we
need context information.

In addition, there is the issue of combinatorial
explosion. For example, the bigram guhkit áiggi
‘longer time’ may be a compound error in one con-
text, giving an analysis as a single noun token. But
it is also ambiguous with sixteen two-token read-
ings, where the first part may be adjective, adverb
or verb. We want to include these as alternative
readings.

A naïve solution to getting multiple, ambiguous
tokenisations of a string like guhkit áiggi would be
to insert an optional space in the compound border
in the entry for dynamic compounds, with an error
tag. But if we analyse by longest match, the error
reading would be the only possible reading. We
could make the error tag on the space be optional,
which would make the entry ambiguous between
adjective+noun and compound, but we’d still be
missing the adverb/verb+noun alternatives, which
do not have a compound border between them. To
explicitly encode all correct alternatives to com-
pound errors in the lexicon, we would need to enter
readings for e.g. verb+noun bigrams simply be-
cause they happen to be ambiguous with an error
reading of a nominal compound.

Manually adding every bigram in the lexicon

8 The non-head noun sometimes has an epenthetic only
when used as a compound left-part, information which is also
encoded in the lexicon.

that happens to be ambiguous with an error would
be extremely tedious and error-prone. Adding it
automatically through FST operations turns out to
quickly exhaust memory and multiply the size of
the FST. Our solution would need to avoid this
issue.

(3) omd.
for.example

sámeskuvllas
Sámi.school.LOC

‘for example in the Sámi school’

(4) omd.
for.example

Álttás
Alta.LOC

sámeskuvllas
Sámi.school.LOC

‘for example in Alta in the Sámi school’

In the fragment in ex. (3)–(4) above, the pe-
riod after the abbreviation omd. ‘for example’ is
ambiguous with a sentence boundary. In the first
example, we could use the local information that
the noun sámeskuvllas ‘Sámi school (Loc.)’ is low-
ercase to tell that it is not a sentence boundary.
However, the second sentence has a capitalised
proper noun right after omd. and the tokenisation
is less straightforward. We also need to know that,
if it is to be two tokens instead of one, the form
splits before the period, and the tags belonging
to "<omd>" go with that form, and the tags be-
longing to "<.>" go with that form. That is, we
need to keep the information of which substrings
of the form go with which readings of the whole,
ambiguously-tokenised string.

As this and the previous examples show, we need
context information to resolve the ambiguity; this
means we need to defer the resolution of ambiguous
tokenisation until after we have some of the mor-
phological/syntactic/semantic analysis available.

(5) Itgo
not.SG2.Q

don
you

muitte
remember

‘Don’t you remember’

(6) It
not.SG2

go
Q

don
you

muitte
remember

‘Don’t you remember’

Ex. (5) and (6) above are equivalent given the
context – the space is just a matter of style, when
used in this sense – but go appearing as a word on
its own is locally ambiguous, since the question
particle go may in other contexts be a conjunction
(meaning ‘when, that’). We want to treat Itgo ‘don’t
you’ as two tokens It+go; having equal analyses for
the equal alternatives (after disambiguation) would
simplify further processing. This can be encoded in
the lexicon as one entry which we might be able to
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split with some postprocessing, but before the cur-
rent work, our tools gave us no way to show what
parts of the form corresponded to which tokens. A
typical FST entry (here expanded for simplicity)
might contain

ii+V+Sg2+TOKEN+go+Qst:itgo

Now we want to encode that the form splits be-
tween ‘it’ and ‘go’, and that ‘ii+V+2Sg’ belongs to
‘it’, and that ‘go+Qst’ belongs to ‘go’. But inserting
a symbol into the form would mean that the form
no longer analyses; we need to somehow mark the
split-point.

Our system solves all of the above issues – we
explain how below.

3 Method

Below we present our grammar checker pipeline,
and our method to analyse and resolve ambiguous
tokenisation. We first describe the system architec-
ture of the North Sámi grammar checker, then our
morphological analysis and tokenisation method,
and finally our method of finding errors by disam-
biguating ambiguous tokenisation.

3.1 System architecture

The North Sámi grammar checker consists of dif-
ferent modules that can be used separately or in
combination, cf. Figure 1.

The text is first tokenised and morphologically
analysed by the descriptive morphological ana-
lyser tokeniser-gramcheck-gt-desc.pmhfst, which
has access to the North Sámi lexicon with both er-
ror tags and lexical semantic tags. The following
step, analyser-gt-whitespace.hfst, detects and tags
whitespace errors. It also tags the first words of
paragraphs and other whitespace delimited bound-
aries, which can then be used by the boundary de-
tection rules later on, which enables detecting e.g.
headers based on their surrounding whitespace.

The valency annotation grammar valency.cg3
adds valency tags to potential governors. Then
follows the module that disambiguates ambigu-
ous tokenisation, mwe-dis.cg3, which can select
or remove compound readings of multi-word ex-
pressions based on the morpho-syntactic context
and valencies. It can also decide whether punc-
tuation is a sentence boundary or not. The next
module, divvun-cgspell, takes unknown words and
runs them through our spell checker, where sugges-
tions include morphological analyses.

The next module is the CG grammar grc-disam-
biguator.cg3, which performs morpho-syntactic
analysis and disambiguation, except for the speller
suggestions, which are left untouched. The
disambiguator is followed by a CG module,
spellchecker.cg3, which aims to reduce the sug-
gestions made by the spellchecker by means of the
grammatical context. The context is now partly dis-
ambiguated, which makes it easier to decide which
suggestions to keep, and which not.9

The last CG module is grammarchecker.cg3,
which performs the actual error detection and cor-
rection – mostly for other error types than spelling
or compound errors. The internal structure of gram-
marchecker.cg3 is more complex; local case error
detection takes place after local error detection,
governor-argument dependency analysis, and se-
mantic role mapping, but before global error detec-
tion.

Finally, the correct morphological forms are gen-
erated from tag combinations suggested in gram-
marchecker.cg3 by means of the normative mor-
phological generator generator-gt-norm.hfstol, and
suggested to the user along with a short feedback
message of the identified error.

3.2 Ambiguous tokenisation

A novel feature of our approach is the support for
different kinds of ambiguous tokenisation in the
analyser, and how we disambiguate ambiguous to-
kens using CG rules.

We do tokenisation as part of morphological
analysis using the hfst-tokenise tool, which does
a left-to-right longest match analysis of the input,
where matches are those given by a pmatch anal-
yser. This kind of analyser lets us define tokenisa-
tion rules such as “a word from our lexicon may
appear surrounded by whitespace or punctuation”.
The pmatch analyser imports a regular lexical trans-
ducer, and adds definitions for whitespace, punc-
tuation and other tokenisation hints; hfst-tokenise
uses the analyser to produce a stream of tokens
with their morphological analysis in CG format.

As an example, hfst-tokenise will turn the input
ii, de ‘not, then’ into three CG cohorts:

9 In later work done after the submission, we tried using
grc-disambiguator.cg3 again after applying spellchecker.cg3,
this time allowing it to remove speller suggestions. Given that
the context was now disambiguated, and problematic speller
suggestion cases had been handled by spellchecker.cg3, it
disambiguated the remaining speller suggestions quite well,
and left us with just one or a few correct suggestions to present
to the user.
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Figure 1: System architecture of the North Sámi grammarchecker

"<ii>"
"ii" V IV Neg Ind Sg3 <W:0>

"<,>"
"," CLB <W:0>

:
"<de>"

"de" Adv <W:0>
"de" Pcle <W:0>

The space between the words is printed after
the colon. The analyses come from our lexical
transducer.

Define morphology @bin"analyser.hfst" ;
Define punctword morphology &

[ Punct:[?*] ] ;
Define blank Whitespace |

Punct ;
Define morphoword morphology

LC([blank | #])
RC([blank | #]) ;

regex [ morphoword | punctword ];

The above pmatch rules say that a word from the
lexicon (analyser.hfst) has to be surrounded by a
"blank", where a blank is either whitespace or punc-

tuation. The LC/RC are the left and right context
conditions. We also extract (intersect) the subset
of the lexicon where the form is punctuation, and
allow that to appear without any context conditions.

We insert re-tokenisation hints in the lexicon at
places where we assume there is a possible tokeni-
sation border, and our changes to hfst-tokenise let
the analyser backtrack and look for other tokenisa-
tions of the same input string. That is, for a given
longest match tokenisation, we can force it to redo
the tokenisation so we get other multi-token read-
ings with shorter segments alongside the longest
match. This solves the issue of combinatorial ex-
plosion.

As a simple example, the ordinal anal-
ysis of 17. has a backtracking mark be-
tween the number and the period. If
the lexicon contains the symbol-pairs/arcs:
1:1 7:7 ε:@PMATCH_BACKTRACK@
ε:@PMATCH_INPUT_MARK@ .:A ε:Ord
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then, since the form-side of this analysis is 17.,
the input 17. will match, but since there was a
backtrack-symbol, we trigger a retokenisation. The
input-mark symbol says where the form should be
split.10 Thus we also get analyses of 17 and . as
two separate tokens.
"<17.>"

"17" A Ord Attr
"." CLB "<.>"

"17" Num "<17>"

To represent tokenisation ambiguity in the CG
format, we use vislcg3 subreadings,11 where
deeper (more indented) readings are those that
appeared first in the stream, and any reading
with a word-form-tag ("<.>" above) should
(if chosen by disambiguation) be turned into
a cohort of its own. Now we may run a
regular CG rule to pick the correct reading
based on context, e.g. SELECT (".") IF (1
some-context-condition) ...; which
would give us
"<17.>"

"." CLB "<.>"
"17" Num "<17>"

Then a purely mechanical reformatter named cg-
mwesplit turns this into separate tokens, keeping
the matching parts together:
"<17>"

"17" Num
"<.>"

"." CLB

We also handle possible compound errors with
the above scheme. When compiling the lexical
transducer, we let all compound boundaries option-
ally be realised as a space. Two successive nouns
like illu sáhka ‘happiness news (i.e. happy news)’
will be given a compound analysis which includes
an error tag. We also insert a backtracking sym-
bol with the space, so that the tokenisation tool
knows that the compound analysis is not necessar-
ily the only one (but without having to explicitly
list all possible alternative tokenisations). If the re-
tokenisation finds that the nouns can be analysed
and tokenised independently, then those tokens and
analyses are also printed.
"<illu sáhka>"

10This also means we cannot reshuffle the input/output
side of the FST. In practice, we use a flag diacritic in the
lexicon, which will keep its place during minimisation, and
after the regular lexicon is compiled, we turn the flag into the
ε:@PMATCH_INPUT_MARK@ symbol-pair.

11https://visl.sdu.dk/cg3/chunked/
subreadings.html (accessed 2018-10-10)

"illusáhka" N Sg Nom Err/SpaceCmp
"sáhka" N Sg Nom "< sáhka>"

"illu" N Sg Nom "<illu>"

Given such an ambiguous tokenisation, CG rules
choose between the compound error and the two-
token readings, using context information from the
rest of the sentence. If the non-error reading was
chosen, we get:
"<illu sáhka>"

"sáhka" N Sg Nom "< sáhka>"
"illu" N Sg Nom "<illu>"

which cg-mwesplit reformats to two cohorts:
"<illu>"

"illu" N Sg Nom
"< sáhka>"

"sáhka" N Sg Nom

3.3 Rule-based disambiguation of ambiguous
tokenisation

As mentioned above, disambiguation of ambigu-
ous tokenisation is done after morphological analy-
sis. Consequently, this step has access to undisam-
biguated morphological (but not full syntactical)
information. In addition, lexical semantic tags and
valency tags are provided. The rules that resolve
sentence boundary ambiguity are based on transi-
tivity tags of abbreviations, lexical semantic tags,
and morphological tags. Some of them are specific
to one particular abbreviation.

Bi- or trigrams given ambiguous tokenisation
can either be misspelled compounds (i.e. in North
Sámi typically two-part compounds are the norm)
or two words with a syntactic relation. The as-
sumption is that if a compound is lexicalised, two
or more adjacent words may be analysed as a com-
pound and receive an errortag (Err/SpaceCmp), us-
ing a CG rule such as the following:

SELECT SUB:* (Err/SpaceCmp) IF (NEGATE
0/* Err/MissingSpace OR Ess);

This rule selects the error reading unless any sub-
reading of this reading (0/*) already has another
error tag or is an essive case form.

This is the case unless any other previously ap-
plied rule has removed the error reading. Version
r172405 of the tokenisation disambiguation gram-
mar mwe-dis.cg3 has 40 REMOVE rules and 8
SELECT rules.

Compound errors are ruled out for example if
the first word is in genitive case as it can be the first
part of a compound but also a premodifier. The
simplified CG rule below removes the compound
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error reading if the first component is in genitive
unless it receives a case error reading (nomina-
tive/accusative or nominative/genitive) or it is a
lesser used possessive reading and a non-human
noun. The rule makes use of both morphological
and semantic information.

REMOVE (Err/SpaceCmp) IF (0/1 Gen -
Allegro - Err/Orth-nom-acc - Err/
Orth-nom-gen - PX-NONHUM);

(7) Gaskavahku
Wednesday.GEN

eahkeda
evening.ACC

‘Wednesday evening’

(8) áhpehis
pregnant

nissonolbmuid
woman.ACC.PL

‘pregnant women’

In ex. (7), gaskavahku ‘Wednesday’ is in genitive
case. The context to rule out a compound error
is very local. In ex. (8), áhpehis ‘pregnant’ the
first part of the potential compound is an attributive
adjective form. Also here compound errors are
categorically discarded.

(9) Paltto
Paltto

lea
is

riegádan jagi
born.PRFPRC year.ACC

1947
1947

‘Paltto was born in 1947’

(10) galggai
should

buot
all

báikkiin
place.LOC.PL

dárogiella
Norwegian.NOM

oahpahusgiellan
instructing.language in all places
‘Norwegian had to be the instructing lan-
guage’

Other cases of compound error disambiguation,
however, are more global. In ex. (9), riegádan jagi
‘birth year (Acc.)’ is a lexicalized compound. How-
ever as it is preceded by a finite verb, which is also
a copula, i.e. lea ‘is’, the perfect participle form
riegádan ‘born’ is part of a past tense construction
(‘was born’), and the compound error needs to be
discarded.

In ex. (10), on the other hand, the relation be-
tween the first part of the bigram (dárogiella ‘Nor-
wegian’) and the second part (oahpahusgiellan ‘in-
structing language (Ess.)’) is that of a subject to
a subject predicate. The disambiguation grammar
refers to a finite copula (galggai ‘should’) preced-
ing the bigram.

4 Evaluation

In this section we evaluate the previously described
modules of the North Sámi grammar checker.

Firstly, we evaluate the disambiguation of com-
pound errors in terms of precision and recall. Then
we compare our system for sentence segmentation
with an unsupervised system. Since a corpus with
correctly annotated compound and sentence bound-
ary tokenisation for North Sámi is not available, all
evaluation and annotation is done from scratch. We
use the SIKOR corpus (SIKOR2016)),12 a descrip-
tive corpus which contains automatic annotations
for linguistic research purposes, but no manually
checked/verified tags. We selected a random cor-
pus of administrative texts for two reasons. We had
a suspicion that it would have many abbreviations
and cases of ambiguous tokenisation. Secondly,
administrative texts stand for a large percentage of
the total North Sámi text body, and the genre is
thus important for a substantial group of potential
users of our programs.

4.1 Compound error evaluation

For the quantitative evaluation of the disambigua-
tion of potential compound errors we calculated
both precision (correct fraction of all marked er-
rors) and recall (correct fraction of all errors).
The corpus used contains 340,896 space separated
strings, as reported by the Unix tool wc. The exact
number of tokens will vary depending on tokenisa-
tion techniques, as described below.

The evaluation is based on lexicalised com-
pounds as potential targets of ambiguous tokeni-
sation. A previous approach allowed ambiguous
tokenisation of dynamic compounds too, solely us-
ing syntactic rules to disambiguate. However, this
led to many false positives (which would require
more rules to avoid). Since our lexicon has over
110,000 lexicalised compounds (covering 90.5 %
of the compounds in the North Sámi SIKOR corpus)
coverage is acceptable without the riskier dynamic
compound support.13

Table 1 contains the quantitative results of the
compound error evaluation. Of the 340.895 run-
ning bigrams in the text, there were a total of 4.437
potential compound errors, i.e. 1.30 % of running
bigrams are analysed as possible compounds by
our lexicon. On manually checking, we found 458
of these to be true compound errors (0.13 % of run-
ning bigrams, or 10.3 % of potential compound
errors as marked by the lexicon). So the table

12SIKOR contains a range of genres; the part used for eval-
uation contains bureaucratic texts.

13For less developed lexicons, the trade-off may be worth
it.
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True positives 360
False positives 110
True negatives 3,869
False negatives 98
Precision 76.6%
Recall 78.6%

Table 1: Qualitative evaluation of CG compound error
detection

indicates how well our Constraint Grammar dis-
ambiguates compound errors from words that are
supposed to be written apart, and tells nothing of
the work done by the lexicon in selecting possible
compound errors (nor of possible compound errors
missed by the lexicon).14

Precision for compound error detection is well
above the 67% threshold for any error type in a
commercial grammar checker mentioned by Arppe
(2000, p.17), and the F0.5 (weighting precision
twice as much as recall) score is 77.0%, above
e.g. Grundkiewicz and Junczys-Dowmunt (2018)’s
72.0%.15

False positives occur for example in cases where
there is an internal syntactic structure such as in
the case of ex. (11), where both bálvalus ‘service’
and geavaheddjiide ‘user (Ill. Pl.)’ are participants
in the sentence’s argument structure. Since there
is no finite verb, the syntactic relation could only
be identified by defining the valency of bálvalus
‘service’.

(11) Buoret
Better

bálvalus
service.NOM.SG

geavaheddjiide
user.ILL.PL

‘Better service to the users’

A number of the false negatives (cf. ex. (12)) are
due to frequent expressions including lágan (i.e.
iešgud̄etlagan ‘different’, dánlágan ‘this kind of’,
etc.), which need to be resolved by means of an
idiosyncratic rule. Dan and iešgud̄et are genitive
or attributive pronoun forms and not typically part
of a compound, so a syntactic rule only does not
resolve the problem.

14We have also not calculated the number of actual com-
pounds in the evaluation corpus, so the ratio of compound
errors to correct compounds is unknown.

15 We would like to compare performance on this task with
a state-of-the-art machine learning method, but have seen
no references for this particular task to use as an unbiased
baseline. However, the gold data set that was developed for
evaluating our method is freely available to researchers who
would like to experiment with improving on the results.

(12) *iešgud̄et
different

lágan
kinds

molssaeavttut
alternative.PL

‘Different kinds of alternatives’

(13) *Láhka
law.NOM;lacquer.GEN

rievdadusaid
changing.ACC.PL

birra
about
‘About the law alterations’

In ex. (13), there is a compound error. However,
one of the central rules in the tokeniser disambigua-
tion grammar removes the compound error reading
if the first part of the potential compound is in the
long genitive case form. However, in this case
láhka can be both the genitive form of láhkka ‘lac-
quer’ and the nominative form of láhka ‘law’. This
unpredictable lexical ambiguity had not been taken
into account by the disambiguation rule, which is
why there is a false negative. In the future it can
be resolved by referring to the postposition birra
‘about’, which asks for a preceding genitive.

4.2 Sentence boundary evaluation
A common method for splitting sentences in a com-
plete pipeline (used e.g. by LanguageTool) is to
tokenise first, then do sentence splitting, followed
by other stages of linguistic analysis. Here a stan-
dalone tokeniser would be used, e.g. PUNKT (Kiss
and Strunk, 2006), an unsupervised model that uses
no linguistic analysis, or GATE16 which uses regex-
based rules. The Python package SpaCy17 on the
other hand trains a supervised model that predicts
sentence boundaries jointly with dependency struc-
ture. Stanford CoreNLP18 uses finite state automata
to tokenise, then does sentence splitting.

In contrast, our method uses no statistical infer-
ence. We tokenise as the first step, but the tokenisa-
tion remains ambiguous until part of the linguistic
analysis is complete.

Below, we make a comparison with PUNKT19,
which, although requiring no labelled training data,
has been reported20 to perform quite well compared
to other popular alternatives.

As with the above evaluation, we used bureau-
cratic parts of the SIKOR corpus. We trained the
PUNKT implementation that comes with NLTK on

16http://gate.ac.uk/ (accessed 2018-10-08)
17https://spacy.io/ (accessed 2018-10-08)
18http://www-nlp.stanford.edu/software/

corenlp.shtml (accessed 2018-10-08)
19https://www.nltk.org/_modules/nltk/

tokenize/punkt.html (accessed 2018-10-08)
20https://tech.grammarly.com/blog/

how-to-split-sentences (accessed 2018-10-08)
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System PUNKT Divvun
True pos. 1932 1986
False pos. (split mid-sent) 39 29
True neg. 474 484
False neg. (joined sents) 55 1
Precision 98.02% 98.56%
Recall 97.23% 99.95%

Table 2: Sentence segmentation errors per system on
2500 possible sentences.22

287.516 "words" (as counted by wc), and manu-
ally compared the differences between our system
(named divvun below) and PUNKT. We used a
trivial sed script s/[.?:!] */&\n/g to cre-
ate a "baseline" count of possible sentences, and
ran the evaluation on the first 2500 potential sen-
tences given by this script (as one big paragraph),
counting the places where the systems either split
something that should have been one sentence, or
treated two sentences as one; see table 2.

Of the differences, we note that PUNKT often
treats abbreviations like nr or kap. as sentence
boundaries, even if followed by lower-case words
or numbers (st. meld. 15 as three sentences).
Our system sometimes makes this mistake too, but
much more rarely. Also, PUNKT never treats colon
as sentence boundaries. The colon in Sámi is used
for case endings on names, e.g. Jönköping:s, but
of course also as a clause or sentence boundary.
Thus many of the PUNKT errors are simply not
marking a colon as a sentence boundary. On the
other hand, our system has some errors where an
unknown word led to marking the colon (or period)
as a boundary. This could be fixed in our system
with a simple CG rule.

There are also some odd cases of PUNKT not
splitting on period even with following space and
title cased word, e.g. geavahanguovlluid. Rád-
jegeassin. Where the baseline sed script creates
the most sentence boundaries in our evaluation test
set (2500), our system creates 2015 sentences, and
PUNKT 1971.

Our system is able to distinguish sentence bound-
aries where the user forgot to include a space, e.g.
buorrin.Vuoigatvuod̄at is correctly treated as a sen-
tence boundary. This sort of situation is hard to
distinguish in general without a large lexicon. Our
system does make some easily fixable errors, e.g.
kap.1 was treated as a sentence boundary due to a
wrongly-written CG rule (as such, this evaluation

has been helpful in uncovering silly mistakes). Be-
ing a rule-based system, it is easy to support new
contexts when required.

5 Conclusion

We have introduced the North Sámi grammar
checker presenting its system architecture and de-
scribed its use and necessity for the North Sámi
language community. Tokenisation is the first step
in a grammar checker when approaching frequent
spelling error types that cannot be resolved without
grammatical context. We are questioning the tradi-
tional concept of a token separated by a space, not
only in terms of multiwords, but also in terms of po-
tential compound errors. Our experiment showed
that our system outperforms a state-of-the-art un-
supervised sentence segmenter. Disambiguation
of compound errors and other two-word combina-
tions give good results both in terms of precision
and recall, i.e. both are above 76%. Our method
of ambiguous tokenisation and ambiguity resolu-
tion by means of grammatical context allows us
to improve tokenisation significantly compared to
the standard approaches. The integration of the
grammar checker framework in the Giella infras-
tructure ensures that this approach to tokenisation
is directly available to all other languages using
this infrastructure.
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Abstract

Lexicography and corpus studies of grammar
have a long history of fruitful interaction. For
the most part, however, this has been a one-
way relationship. Lexicographers have exten-
sively used corpora to identify previously un-
detected word senses or find natural usage ex-
amples; using lexicographic materials when
conducting data-driven investigations of gram-
mar, on the other hand, is hardly common-
place. In this paper, I present a Beserman Ud-
murt corpus made out of “artificial” dictionary
examples. I argue that, although such a corpus
can not be used for certain kinds of corpus-
based research, it is nevertheless a very use-
ful tool for writing a reference grammar of a
language. This is particularly important in the
case of underresourced endangered varieties,
which Beserman is, because of the scarcity
of available corpus data. The paper describes
the process of developing the Beserman usage
example corpus, explores its differences com-
pared to traditional text corpora, and discusses
how those can be beneficial for grammar re-
search.

1 Introduction

Following a widely acknowledged idea that the
language above the phonological level can be
roughly split into lexicon and grammar, language
documentation is divided into two interconnected
subfields, lexicography and grammar studies. Cor-
pora have been used since their advent in both
these domains; one of the first studies of English
based on the Brown corpus (Francis and Kučera,
1982) contained frequency analysis for both words
and parts of speech. It was recognized early on
in the history of corpora that they are an excel-
lent source of usage examples for both dictionar-
ies and reference grammars. This gave rise to a
data-driven approach to language documentation,
which prescribes using only “real” examples taken

from corpora in descriptive work (Francis, 1993).
Corpora have become standard providers of dictio-
nary examples, which can even be searched for au-
tomatically (Kilgarriff et al., 2008). However, this
approach can hardly be applied to underresourced
endangered languages because it relies on large
representative corpora, which are normally un-
available for such languages. Grammatical stud-
ies based on small spoken corpora with minimal
help of additional elicitation are often possible and
have been conducted, e.g. by Khanina (2017) for
Enets or by Klumpp (2005) for Kamas. The same
cannot be said about lexicography. While even
small corpora are a valuable source of usage ex-
amples for dictionaries, the lexicographer has to
elicit examples for non-frequent or obsolete en-
tries or word senses. These examples usually stay
in the dictionary and are not used for any non-
lexicographic research.

I argue that such elicited usage examples can
be turned into a corpus, which can actually prove
to be helpful for a variety of grammar studies, es-
pecially in the absence of large “natural” corpora.
An example of a feature that cannot be available in
traditional corpora, but can appear in elicited ex-
amples, is negative linguistic material. The paper
describes a corpus of usage examples I developed
for the documentation of Beserman Udmurt. It
presents the data and the methods I used to develop
the corpus. After that, its frequency characteristics
are compared to those of traditional spoken cor-
pora. Finally, its benefits and disadvantages for
certain kinds of grammar research are discussed.

2 The data

Beserman is classified by Kelmakov (1998) as one
of the dialects of Udmurt (Uralic > Permic). It is
spoken by approximately 2200 people who belong
to the Beserman ethnic group, mostly in North-
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Western Udmurtia, Russia. Having no official
orthography, it remains almost entirely spoken.
This, together with the fact that transmission to
children has virtually stopped, makes it an endan-
gered variety. It differs significantly from Stan-
dard Udmurt in phonology, lexicon and grammar,
which justifies the need for separate dictionaries
and grammatical descriptions. The two existing
grammatical descriptions, by Teplyashina (1970)
and Lyukina (2008), deal primarily with phonol-
ogy and morphemics, leaving out grammatical se-
mantics and syntax.

Beserman is the object of an ongoing documen-
tation project, whose goal is to produce a dictio-
nary and a reference grammar, accompanied by
a spoken corpus. The dictionary, which nears
completion, contains approximately 5500 entries,
most of which have elaborate descriptions of word
senses and phraseology, and illustrated with exam-
ples. The annotated texts currently count about
103,000 words, which are split into two collec-
tions, sound-aligned corpus (labeled further SpC)
and not sound-aligned corpus.1

3 Development of the corpus

The Beserman usage example corpus (labeled fur-
ther ExC) currently contains about 82,000 words
in 14,000 sentences. Each usage example is
aligned with its translation into Russian2 and com-
ments. The comments tier contains the informa-
tion about the number of speakers the example
was verified with, and remarks on possible mean-
ings or context. The main source of examples for
the corpus was the dictionary, however a small
part (5% of the corpus) comes from grammati-
cal questionnaires. The dictionary examples were
collected using several different techniques. First,
there are translations from Russian (often modi-
fied by the speakers in order to be more informa-
tive and better describe their culture). Second,
many examples were generated by the speakers
themselves, who were trained to do so by the lin-
guists. Finally, some of the examples were pro-

1Both the dictionary in its current version and the cor-
pora are publicly accessible at http://beserman.ru
and http://multimedia-corpus.beserman.ru/
search.

2Since the native speakers, including heritage speakers,
are the primary target audience of the dictionary, and they are
bilingual in Russian, the examples are translated into Rus-
sian. Translation of the dictionary into English has started re-
cently, but no English translations of examples are available
at the moment.

duced by the linguists (none of who is a native
Beserman speaker) and subsequently checked and
corrected by the speakers. The development of the
corpus included filtering and converting the source
data, performing automatic morphological annota-
tion, and indexing in a corpus platform with a web
interface.

3.1 Data preparation

The dictionary is stored in a database created by
the TLex dictionary editor, which allows export of
the data to XML. The XML version of the dictio-
nary was used as the source file for filtering and
conversion.

The filtering included three steps. First, the Be-
serman dictionary contains examples taken from
the spoken corpus. Such examples had to be fil-
tered out to avoid duplicate representation of the
same data in the two corpora. Identifying such
examples might be challenging because they are
not consistently marked in the dictionary database,
and because some of them were slightly changed
(e.g. punctuation was added or personal data was
removed). To find usage examples that come from
the spoken corpus, each of them was compared
to the sentences of the corpus. Before the com-
parison, all sentences were transformed to lower-
case, and all whitespaces were removed. If no ex-
act matches were found, the Levenshtein distance
to the corpus sentences of comparable length was
measured. The cut-off parameters were obtained
empirically to achieve a balance between preci-
sion and recall. If a corpus sentence with a dis-
tance of max(2, len/8) was found, where len is
the length of the example in question, the exam-
ple was discarded. Additionally, the “comment”
field was checked. The example was discarded if
it contained an explicit indication that it had been
taken from a text.

Second part of the filtering involved deduplica-
tion of examples. Deduplication was necessary
because some usage examples appeared in multi-
ple entries. In this case, their versions could have
minor differences as well, e.g. because of typo
corrections that were made in only one of them.
Two sentences were considered identical if both
their lowercase versions and their lowercase trans-
lations had the Damerau–Levenshtein distance not
greater than len/10.

Finally, the dictionary is a work in progress.
As such, it contains a number of examples that
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have not been proofread or have not passed suf-
ficient verification, which means checking with
three speakers, as a rule. The goal of the third step
of filtering was to include in the corpus only reli-
able examples that do not require additional ver-
ification. This was done using a combination of
comments and available metadata. The examples
from the sections that have been entirely proofread
for publishing were all included. Examples from
other sections were only included if they had indi-
cation in the comment that they have been checked
with at least two speakers. This excluded a consid-
erable number of examples from the verbal part of
the dictionary, which is under construction now.
The total share of examples that come from the
verbal part is currently just above 9%, despite the
fact that verbal examples in the dictionary actually
outnumber examples from all other parts taken to-
gether. As a consequence, the total size of the
corpus is likely to increase significantly after the
verbal part has been finalized, probably reaching
150,000 words.

An important difference between a traditional
corpus and a collection of usage examples is that
the latter may contain negative examples, i.e. sen-
tences which are considered ungrammatical by the
speakers. About 9.5% of sentences in the Be-
serman corpus of usage examples contain nega-
tive material. Following linguistic tradition, the
sentences or ungrammatical parts of sentences are
marked with asterisks. Other gradations of gram-
matical acceptability include ∗? (ungrammatical
for most speakers) and ?? (marginal / ungrammat-
ical for many speakers). Negative examples are
identified by the converter based on the presence
of such marks in their texts and by the metadata.

The resulting examples are stored as tab-
delimited plain text files. Each file contains exam-
ples from one dictionary entry or one grammatical
questionnaire; positive and negative examples are
kept in separate files. Each example is stored on
a separate line and contains the original text, its
Russian translation, and comments. Additionally,
all filenames are listed in a tab-delimited file to-
gether with their metadata.

3.2 Morphological annotation

A workflow used in the Beserman documenta-
tion project prior to 2017 involved transcription of
recordings for the spoken corpus in a simple text
editor and manual annotation in SIL FLEX. That

workflow was abandoned, mainly because manual
annotation required too much resources, given the
amount of recorded data that had to be processed.
The new workflow comprises transcription, trans-
lation and alignment of recordings in ELAN, sub-
sequent automatic morphological annotation and
automatic disambiguation. Such an approach has
been demonstrated to be well suited for process-
ing spoken corpora of comparable size by Gersten-
berger et al. (2017).

Developing a rule-based morphological ana-
lyzer would be a time-consuming task in itself,
which is why Waldenfels et al. (2014) and Ger-
stenberger et al. (2017) advocate for transcribing
in standard orthography and applying an analyzer
for the standardized variety of the language. The
Beserman case is different though because there
already exists a digital dictionary. Using the dic-
tionary XML as a source, I was able to produce
a grammatical dictionary with the description of
lemmata and inflection types. The dictionary was
manually enhanced with additional information
relevant for disambiguation, such as animacy for
nouns or transitivity for verbs. Apart from that,
several dozen frequent Russian borrowings, absent
from the dictionary, were added to the list. Cou-
pled with a formalized description of morphology,
which I compiled manually, it became the basis for
the automatic Beserman morphological analyzer.
This analyzer is used for processing both new tran-
scriptions in ELAN and usage examples.

After applying the analyzer to the texts, each
token is annotated with a lemma, a part of speech,
additional dictionary characteristics, and all inflec-
tional morphological features, such as case and
number. Annotated texts are stored in JSON. If
there are several analyses possible for a token, they
are all stored. The resulting ambiguity is then re-
duced from 1.7 to 1.35 analyses per analyzed to-
ken by a set of 87 Constraint Grammar rules (Bick
and Didriksen, 2015). The idea was to apply only
those rules which demonstrate near-absolute pre-
cision (at least 98%), while leaving more complex
ambiguity cases untouched. The resulting cover-
age of the analyzer is 96.3% on the corpus of us-
age examples. While this number might look un-
usually high, it is in fact quite expected, given that
there should be a dictionary entry for any non-
borrowed word that occurs in any dictionary ex-
ample.
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3.3 Indexing
The annotated texts are uploaded to a server and
indexed, after which they are available for search
through a web interface using an open-source
Tsakoprus corpus platform.3 The interface al-
lows making simple and multiword queries. The
queries may include constraints on word, lemma,
part of speech, morphological tags, glosses, or any
combinations. In word and lemma search, wild-
cards and regular expressions are available. The
search can produce a list of sentences or a list of
words that conform to the query, together with
some statistical data. The Russian translations
are also morphologically analyzed and searchable.
The interface is available in English and Russian,
and several transliteration options are available for
displaying the texts.

4 Differences from spoken corpora

For comparison, I will use the sound-aligned part
of the Beserman spoken corpus (SpC), which was
morphologically annotated and indexed the same
way the Corpus of usage examples (ExC) was pro-
cessed. At the moment, it contains about 38,000
words in monologues, natural dialogues and dia-
logues recorded during referential communication
experiments. To account for the difference in size,
all frequencies will be presented in items per mil-
lion (ipm).

Two obvious factors make ExC quite different
from SpC frequency-wise. First, the former con-
tains comparable amount of usage examples for
both frequent and non-frequent words. As a con-
sequence, it has a different frequency distribution
of words and lemmata. Its lexical diversity, mea-
sured as overall type/token ratio, is visibly higher
than that of SpC (0.224 vs. 0.179), despite the fact
that it is more than twice as large.

Second, elicited examples constitute a genre
very different from natural narratives and dia-
logues. For example, they contain a much smaller
number of discourse particles or personal pro-
nouns. Table 1 demonstrates how different the fre-
quencies of certain lexical classes are in the two
corpora.

Additionally, there are more different forms at-
tested for a single lemma on average in ExC than
in SpC (Table 2). Although unequal size of the
corpora being compared could play a role here, the

3https://bitbucket.org/tsakorpus/
tsakonian_corpus_platform/src

POS / Lexical class SpC ExC
noun 206K 400K
verb 213K 289K

adjective 52K 68K
pronoun 177K 123K

discourse ptcl. 72K 22K

Table 1: Frequencies (in ipm) of certain parts of
speech and lexical classes in SpC and ExC.

POS SpC ExC
noun 3.15 4.44
verb 4.75 6.08

adjective 2.16 2.56
pronoun 2.72 2.92

Table 2: Average number of different forms per lemma
for certain parts of speech in SpC and ExC.

difference could be explained at least in part by the
fact that the lexicographers had a goal of providing
each word with a handful of examples containing
that word in different forms and in different syn-
tactic positions.

However, the analysis of value distributions of
individual grammatical categories within a given
part of speech reveals that they are usually not
drastically different in the two corpora. Let us
take nouns as an example. Nominal categories in
Udmurt are case, number and possessiveness. Ta-
ble 34 shows the distribution of case forms in the
two corpora (all 8 spatial cases were collated in
the last row). Table 4 shows the distribution of
number forms. Table 5 shows the distribution of
possessive suffixes.5

Case and number distributions only have mi-
nor differences in SpC and ExC. Moreover, an
analysis of combinations of case and number suf-
fixes shows that the distributions of their combi-
nations also look very much alike. Possessiveness
presents a somewhat different picture. Although
not entirely different from SpC, the distribution
in ExC shows lower figures for 2sg, 3pl, and es-
pecially 3sg, and higher ones for the first person
possessors. Lower numbers for 3sg and 2sg have
a straightforward explanation. Apart from being

4The numbers in each column add up to slightly more than
100% because of the remaining ambiguity.

5Nouns may occur without possessive marking; only
nouns marked for possessiveness were included. Figures for
2pl were verified manually because of large-scale ambiguity
between nom,2pl and pl,acc.
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case SpC ExC
nominative / unmarked 60% 65.7%

accusative (marked) 4.7% 9.9%
dative 2% 1.2%

genitive 1.8% 2.2%
2nd genitive (ablative) 0.74% 1.6%

instrumental 7% 4.7%
caritive 0.025% 0.024%

adverbial 0.25% 0.13%
all spatial cases 24.6% 20%

Table 3: Share of different case forms for nouns in
SpC and ExC.

number SpC ExC
sg 94.6% 92.7%
pl 5.4% 7.3%

Table 4: Share of different number forms for nouns in
SpC and ExC.

possessor SpC ExC
1sg 13.2% 28.2%
1pl 1.7% 5.6%
2sg 13.5% 7.7%
2pl 0.2% 0.4%
3sg 63% 54.8%
3pl 8.4% 3.3%

Table 5: Share of different possessive forms for
possessive-marked nouns in SpC and ExC.

used in the direct, possessive sense, these partic-
ular suffixes have a range of “discourse”, non-
possessive functions. This is also true for Stan-
dard Udmurt (Winkler, 2001) and other Uralic lan-
guages (Simonenko, 2014). The 3sg possessive
marks, among other things, contrastive topics and
semi-activated topics that have to be reactivated
in the discourse. The 2sg possessive is also used
with non-possessive meanings, although less of-
ten, only in dialogues and in other contexts than
the 3sg. Its primary discourse function is mark-
ing a new referent that is located physically or
metaphorically in the domain of the addressee.
Example 1, taken from a dialogue, shows both suf-
fixes in non-possessive functions:

(1) Vaj
bring.IMP

so-ize=no
that-P.3SG.ACC=ADD

goz“@-de!
rope-P.2SG.ACC

‘Bring me that rope as well!’

tense SpC ExC
present 43.8% 39.4%

past (direct) 30% 43.2%
future 26.2% 17.4%

Table 6: Share of different tense forms for finite verbs
in SpC and ExC.

The 3sg possessive on “that” marks contrast:
another rope was discussed earlier in the conver-
sation. The 2sg possessive on “rope” indicates
that this particular rope has not been mentioned in
the previous discourse and should be identified by
the addressee. The rope is located next to the ad-
dressee. That the direct possessive sense is ruled
out here follows from the fact that the whole di-
alogue happens on the speaker’s property, so the
rope belongs to him, rather than to the addressee.
Such “discourse” use of the possessives in elicited
examples is quite rare because they normally re-
quire a wider context to appear. A possible ex-
planation for the lower 3pl figure in ExC is that it
is often used when the plural possessor was men-
tioned earlier and is recoverable from the context.

A quick look at the distribution of verbal tenses
in Table 66 shows a picture similar to that of the
possessives. The distributions are not wildly dif-
ferent, but the past tense is clearly more frequent
in ExC. This is expected because a lot of usage ex-
amples, especially for obsolete words, contain in-
formation about cultural practices connected to the
item being described that are no longer followed.
In this respect, the tense distribution in ExC re-
sembles the one in the narratives, which usually
describe past events.

5 Fitness for grammar studies

The way a corpus of usage examples is differ-
ent from traditional corpora makes it unfit for
some kinds of linguistic research. It cannot be
used in any study that looks into long-range dis-
course effects, requires a context or a conver-
sation involving several participants. This in-
cludes, for example, studies of discourse parti-
cles, use of anaphoric pronouns, or information
structure (topic/comment; given/new information,
etc.). Similarly, it is useless for studies that rely on

6Only finite forms were counted. The fourth tense, the
second (evidential) past, was not included because most of
its forms are ambiguous with a much more frequent nominal-
ization, to which it is historically related.
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word or lemma frequency counts, or on type/token
ratios, as those may differ significantly from tradi-
tional corpora.

All downsides listed above are quite pre-
dictable; in fact, it was hardly necessary to build
a corpus of usage examples to arrive at those con-
clusions. Whether such a corpus could be of any
value in other kinds of linguistic research, is a less
trivial question. The observations in Section 4
suggest that the answer to that question is posi-
tive. While the Beserman corpus of usage exam-
ples differs from the spoken corpus in the places
where it could be predicted to differ, it is remark-
able how statistically similar the two corpora are
in all other respects. The relative frequencies of
grammatical forms are only different (although not
extremely different) if these forms convey deic-
tic or discourse-related meanings. In other cases,
the forms have very similar distributions. This
means that corpora of examples in principle can
be used in linguistic research that involves com-
paring frequencies of certain grammatical forms
or constructions, with necessary precautions.

Only research that involves comparing fre-
quency counts or distributions of linguistic phe-
nomena has been discussed so far. A lot of gram-
mar studies, however, only or primarily need the
information about (un)grammaticality or produc-
tivity of a certain phenomenon. It turns out that
a corpus of usage examples could be actually su-
perior to a traditional corpus of a comparable size
for such studies. The reason for that is higher lex-
ical diversity and more uniform frequency distri-
bution of lemmata. This means that for any form
or construction being studied, the researcher will
see more different contexts involving it than in a
traditional corpus, on average.

Let us take the approximative case as an exam-
ple. This case, which has the marker -lań in all Ud-
murt varieties where it exists, marks the Ground
in the approximate direction of which the Figure
is moving. Although it is claimed to exist in liter-
ary Udmurt by all existing grammars, corpus stud-
ies reveal that it only functions as an unproduc-
tive derivational suffix compatible with a handful
of nominal, pronominal and adjectival stems. To
learn whether it can be considered a productive
case suffix in Beserman, its compatibility with a
wider range of nouns should be established.

The approximative has similar relative frequen-
cies in ExC and SpC: 1858 ipm and 1750 ipm, re-

spectively. In both corpora, the approximative was
not a primary focus of investigation. The number
of different contexts it is encountered in, however,
is much higher in ExC. In SpC, there are 16 dif-
ferent types that contain an approximative suffix,
featuring 10 different stems. Only one of those
stems (ulća ‘street’) does not attach the deriva-
tional approximative suffix in Standard Udmurt.
This is definitely insufficient to establish its pro-
ductiveness in Beserman. ExC, however, contains
32 different types that belong to 25 different stems.
Such a difference can hardly be ascribed to the
larger size of ExC because the number of differ-
ent types is expected to have slower-than-linear
growth with respect to the corpus size, and the
type/stem ratio is expected to go up rather than
down. Out of these stems, at least 5 are incompat-
ible with the approximative in Standard Udmurt,
including reka ‘river’, korka ‘house’ and šund“@
‘sun’.7 Another 5 come from negative examples
that highlight the incompatibility of the approxi-
mative with certain inflected postpositions (rela-
tional nouns). All this proves that it is most prob-
ably a productive suffix, while outlining the limits
of its productivity.

Comparison of the figures for the recessive suf-
fix, which also was not the focus of investigation
in either corpus, yields similar results. The reces-
sive case, with a marker -laśen, is the semantic
opposite of the approximative and does not exist
in the literary language even as a derivational suf-
fix. In SpC, there are 7 different types that contain
it. All of them have different lemmata, but again,
only one of the types (k@tlaśen ‘from the side of
the belly’) suggests that they might not constitute
a closed set of denominal adverbs. By contrast,
ExC has 26 different types, containing 26 different
stems, 4 out of which come from negative exam-
ples.

The skewed distribution of parts of speech could
be beneficial too. For example, there is a con-
struction in Udmurt that involves juxtaposition of
an unmarked nominal stem to another noun, e.g.
t’ir n“@d ‘axe handle’. It exists in other Uralic lan-
guages and has been analyzed as compounding by
Fejes (2005). However, its productivity, allowed

7The 65,000-word FLEX part of the spoken corpus, not
counted here, contains 21 different stems. However, this is
only because it includes transcriptions of referential commu-
nication experiments specifically designed to make the par-
ticipants use spatial cases and postpositions with a variety of
nouns.
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possessive relations and constraints on the depen-
dent noun (animacy, referential status, etc.) vary
significantly across Uralic languages and dialects.
A detailed investigation of that construction would
therefore require looking at a large number of in-
stances featuring a variety of dependent nouns.
A search for such a construction yields 77 dif-
ferent dependent nouns in SpC (total frequency
7525 ipm) and 449 different nouns in ExC (total
frequency 25132 ipm).8 In this case, the tremen-
dous increase in numbers stems from the increased
share of nouns in ExC, rather than from an in-
creased lexical diversity. Nouns are almost twice
as likely to appear in ExC than in SpC. There-
fore meeting a sequence of two nouns would be
almost 4 times higher if they were generated inde-
pendently. The independence condition does not
hold for words in a sentence, of course, but the ob-
served factor of 3.34 is still large enough to make
the corpus of examples a more attractive tool for
studying the juxtaposition construction.

Research questions that arise when writing a
reference grammar mostly belong to the type dis-
cussed above. Concise description of morpholog-
ical and syntactic properties of an affix or a con-
struction mostly require looking at a range of di-
verse examples to determine their productivity and
constraints. The three case studies above show
that this is exactly the situation where a corpus of
usage examples could outperform a similarly sized
spoken corpus.

Apart from the aforementioned considerations,
which would probably be valid for a corpus based
on any comprehensive dictionary, there are spe-
cific features of the Beserman usage example
corpus that may become beneficial for research.
Most importantly, it contains elicited examples
from grammatical questionnaires, both positive
and negative. Although their share is too small
to reach any conclusions about their usefulness at
the moment, this could be a first step to the reuse
of elicited data in subsequent research. Currently,
data collected through questionnaires is virtually
always used only once. At best, the examples are
archived to support the analysis based on them and
ensure that the findings are reproducible; at worst,
they are discarded and forgotten. Of course, each
questionnaire is tailored to the particular research
question of its author. However, it is probable that

8To avoid as much ambiguity as possible without manual
filtering, the search was narrowed down to unambiguously
annotated tokens.

if the corpus is large enough, it will contain exam-
ples that could prove useful for the research ques-
tions other than their author had in mind. Presence
of negative material could partially reduce the gen-
eral aversion to corpora that the linguists working
in the generative paradigm tend to have. Availabil-
ity of such corpora for multiple languages will also
facilitate typologically oriented research on syn-
tax, which otherwise relies on manual work with
reference grammars and other secondary sources.

Finally, the Beserman corpus of usage exam-
ples, as well as any corpus based on a bilingual
dictionary, is in essence a parallel corpus. This
could be used for both linguistic needs (see e.g.
Volk et al. (2014) for the list of possibilities) and
for developing or evaluating machine translation
systems.

6 Conclusion

Having a comprehensive dictionary in a machine-
readable form and a morphological analyzer al-
lows one to create a corpus of usage examples
rather quickly. Its size could be comparable to
those of large spoken corpora, which tend to have
a maximum of 150,000 tokens for unwritten en-
dangered languages. Even if a spoken corpus is
available, this is a significant addition. Some-
times, however, dictionary examples could be the
only large source of linguistic data, e.g. in the
case of extinct languages. It is therefore impor-
tant to know how the data of usage examples cor-
responds to that of spoken texts, and for what kind
of linguistic research they are suitable. An analy-
sis of the Beserman corpus of usage examples re-
veals that it can actually be used as a reliable tool
in a wide range of research on grammar. Obvious
limitations prevent its use in studies that involve
word and lemma counts, discourse or information
structure. However, outside of these areas, usage
examples are quite similar to natural texts, which
justifies use of such corpora. Increased lexical di-
versity and more uniform word distributions make
corpora of usage examples even more useful for
some kinds of research than traditional corpora of
similar size. Finally, such corpora can addition-
ally contain data from questionnaires and negative
material, which could facilitate their reuse.
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Abstract
This paper discusses the development and
evaluation of a Speech Synthesizer for Plains
Cree, an Algonquian language of North
America. Synthesis is achieved using Sim-
ple4All and evaluation was performed using
a modified Cluster Identification, Semanti-
cally Unpredictable Sentence, and a basic di-
chotomized judgment task. Resulting synthe-
sis was not well received; however, obser-
vations regarding the process of speech syn-
thesis evaluation in North American indige-
nous communities were made: chiefly, that
tolerance for variation is often much lower
in these communities than for majority lan-
guages. The evaluator did not recognize gram-
matically consistent but semantically nonsense
strings as licit language. As a result, monosyl-
labic clusters and semantically unpredictable
sentences proved not the most appropriate
evaluate tools. Alternative evaluation methods
are discussed.

1 Introduction

While majority languages such as English provide
ample data for the creation and training of speech
recognition, corpus annotation, and general lan-
guage models, under-resourced languages are in a
unique position to benefit greatly from such tech-
nologies. Speech Synthesizers, mobile keyboards,
in-browser reading guides and smart dictionaries
all provide invaluable tools to help aid language
learners in gaining proficiency in languages where
speaker numbers are falling. With the ubiquity of
speech synthesis systems in public transit, emer-
gency broadcast systems, and (most notably) mo-
bile phones, under-resourced language communi-
ties often clamour for such technology. In addi-
tion to the positive social implications of having
your language associated with technological inno-
vation, speech synthesis systems provide a very
real benefit in endangered and under-resourced

language communities: while it is unfeasible for
elders and remaining fluent speakers to detail ev-
ery possible word and story, an ideal speech syn-
thesizer allows for a learner to hear, on demand,
any word, phrase, sentence, or passage. Despite
this obvious benefit, endangered language groups
rarely have such technology available, especially
in the context of North American Indigenous lan-
guages.

This paper details the development of an early
synthesizer for Plains Cree, an Indigenous lan-
guage of Canada, and an evaluation of the result-
ing system. Through synthesis via the Simple4All
suite of programs, this paper documents the pros
and cons of such a system, and investigates how a
speech synthesizer can be evaluated in the context
of North American Indigenous languages.

2 Plains Cree Phonology

Plains Cree is a polysynthetic language of the
Algonquian family spoken mainly in western
Canada. With a recorded speaker count of nearly
35,0001, Plains Cree is classified as a stage 5
language (or “developing”) according to the Ex-
panded Intergenerational Transmission Disruption
Scale (Ethnologue, 2016).

Much of the literature on the language has fo-
cused on its morphosyntax. The phonetics and
phonology have been less well described. In-
deed, only five of the 50 pages of Wolfart’s (1996)
sketch of the language deal with what can be cat-
egorized as phonetics or phonology, and only four
pages of his earlier, more comprehensive, gram-
mar were dedicated to the topic (Wolfart, 1973).
In the former, which is the more phonologically
inclined, Wolfart identifies the phoneme inventory

1Although this is the current cited number of speakers,
it is likely that this is an optimistic count of speakers. The
true number is likely several thousand speakers lower, though
reliable demographics are difficult to obtain.
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of Plains Cree as containing eight consonants, two
semi-vowels/glides, and seven vowels (three short
and four long).2

Although Plains Cree vowels are distinguished
by length, it is also the case that the long vow-
els are qualitatively different from the short vow-
els (with the short vowels being less peripheral
than their long counterparts (Harrigan and Tucker,
2015; Muehlbauer, 2012)). Further, the issue of
quality is exacerbated by the language’s system
of stress, which is poorly understood. Conso-
nants show similar, though better understood, vari-
ation. Stops are generally voiceless word initially,
geminated when between two short vowels, and
show free-variation between voiced and voiceless
realization otherwise (Wolfart, 1996). The af-
fricate /ts/ and fricative /s/ appear in seemingly
free variation with [tS] and [S], respectively (Wol-
fart, 1996). Plains Cree also possesses diphthongs,
though only as allophonic realizations of vowels
adjacent to glides. When either long or short /a/,
/o/, or /e/ occur before /j/ the diphthongs [aI], [oI],
[eI] occur (respectively). When these come before
/w/, the diphthongs [aU], [oU], and [eU] are real-
ized (respectively). When short or long /i/ occurs
before /j/, it is lengthened; when short /i/ comes
before /w/, [o] is realized, while long /i:/ in the
same position produces the diphthong [iU]

Possible syllables are described by Wolfart
(1996, 431) as having an optional onset composed
of a consonant (optionally followed by a /w/ if the
consonant is stop, an affricate, or /m/), a vowel nu-
cleus, followed by an optional coda composed of a
single consonant or either an /s/ or /h/ followed by
a stop/affricate. According to Wolfart (1996, 431)
the vast majority of Cree syllables have no coda.

Plains Cree has a standardized orthography re-
ferred to as the Standard Roman Orthography
(SRO) The standard is best codified by Okimâsis
and Wolvengrey (2008) and makes use of a phone-
mic representation, ignoring allophonic variation
such as the stop voicing described above. The
standard also offers morphophonological informa-
tion; for example, although the third-person sin-
gular apiw (‘S/he sits’) is pronounced /apo/, it
is not written as such, so as to allow the reader
to apply morphological rules such as inflecting
for the imperative by removing the third-person

2There is only one /e/ phoneme in the language and it
is generally considered long for historical reasons. Initially,
Plains Cree did have a short /e/, but this eventually converged
with long /i/ (Bloomfield, 1946, 1).

morpheme, {-w}, and adding {-tân}. Were the
third-person form written <apow> or <apo>,
one might incorrectly expect the imperative form
to be /apota:n/, rather than the correct /apIta:n/.
Vowels in the SRO are marked for length by using
either a circumflex or macron over the vowel, and
<e> is always to be written as long. When diph-
thongs are allophonically present, the underlying
phonemes are used, as in the example of [apo] be-
ing written as <apiw>. The orthography is mostly
shallow: the seven consonants (/p, t, k, ts, s, h, m,
n/) are represented by single graphemes (< p, t, k
, c, s, h, m, n>); short vowels (/a, i, o/) are written
without any diacritic (<a, i, o>), while long vow-
els (/a:, i:, o:, e:/) are written with a circumflex or
macron (<â, ı̂, ô, ê>)

While this standard has been codified in
Okimâsis and Wolvengrey (2008), it is not uni-
versally (or even largely) adopted. While major
publications such as Masuskapoe (2010), Minde
(1997), or those put out by provincial/federal de-
partments, are written in the SRO, many publica-
tions and communications (especially those infor-
mal) are done using nonstandard conventions. In
the Maskwacı̂s Dictionary of Cree Words(1997),
for example, <ch> is used in place of <c>, <h>
is used (in addition to its regular phonemic rep-
resentation) essentially to impart that a vowel is
different than the expected English pronunciation,
and vowel length is not identified. The Alberta El-
der’s Cree Dictionary (LeClaire et al., 1998) does
mark vowel length, though <e> is always written
without length marking.

These orthographic variations, as well as the
paucity of data provide challenges for language
technology.

3 Speech Synthesis

Broadly speaking, speech synthesis comes in two
main forms: parametric and concatenative. Para-
metric synthesis aims to recreate the particular
rules and restrictions that exist to manipulate a
sound wave as in speech (Jurafsky and Martin,
2009, 249). Concatenative synthesis, rather than
focusing on recreating the parameters that produce
speech, concerns itself with stitching together pre-
existing segments to create a desired utterance (Ju-
rafsky and Martin, 2009, 250).

The contemporary focus of speech synthesis is
so-called text to speech (TTS) (Jurafsky and Mar-
tin, 2009, 249), wherein input text is transformed
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into sound. In this process, text is phonemically
represented and then synthesized into a wave-
form (Jurafsky and Martin, 2009, 250). Phone-
mic representation is accomplished though vari-
ous means: dictionaries of pronunciation offer up
a transcription of common words and sometimes
even names, though these are almost guaranteed
to not contain every single word a synthesizer
could expect to encounter (Jurafsky and Martin,
2009). As a result, other methods such as “letter-
to-sound” rules (which aims to provide a phone-
mic representation for a grapheme given a con-
text) have also been employed (Black et al., 1998).
Other units of representation have also been con-
sidered, such as those smaller than the phoneme
(Prahallad et al., 2006). In general, most contem-
porary TTS systems generate a phonemic repre-
sentation through machine learning (Jurafsky and
Martin, 2009, 260). Black et al. (1998), for ex-
ample, instituted a system wherein a computer is
fed set of graphemes and a set of allowable pro-
nunciations for each of those graphemes, along
with the probabilities of a particular grapheme-to-
phoneme pairing. More recent techniques such
as those described by Mamiya et al. (2013) in-
stead take a subset of speech and text data that
are manually aligned and, using machine learning
algorithms, learn the most likely phonemic rep-
resentation of each grapheme given the context.
In any case, grapheme-to-phoneme alignment re-
sults in a system that is able to produce sound for
a given text sequence. A speech synthesis sys-
tem will also provide intonational information to
best reflect naturalistic speech (Jurafsky and Mar-
tin, 2009, 264).

While there have been speech synthesis efforts
for minority language (Duddington et al., n.d), lit-
tle focus has been paid to North American lan-
guages. Although there appears to be a Mohawk
voice available for the eSpeak open-source soft-
ware project (Duddington et al., n.d), the only
published account of an Indigenous language syn-
thesizer seems to be a 1997 technical report de-
tailing a basic fully-concatenative synthesizer for
the Navajo language (Whitman et al., 1997). In
this instance, the authors compiled a list of all
possible diphones (two-phoneme pairs) and had
a Navajo speaker read these in a list (Whitman
et al., 1997, 4). These diphones were then man-
ually segmented, concatenated, and adjusted for
tone (as Navajo is a tonal language) (Whitman

et al., 1997). According to the authors, although
the system was small and lacked much of the data
one might prefer when building a speech synthe-
sizer, the concatenative method they used man-
aged to produce an intelligible synthesizer (Whit-
man et al., 1997, 13). Other than this effort, it
appears that speech synthesis for North American
languages has been largely non-existent. The rea-
son for this is likely due to the lack of resources
in these languages. Languages of North Amer-
ica may lack even a grammar, though many will
have a variety of recordings of important stories
or conversations (Arppe et al., 2016). Few lan-
guages of North America have a standard and well
established written tradition. As a result, speech
synthesis development is necessarily difficult for
these languages. Plains Cree, as one of the most
widely spoken indigenous languages of North
America with roughly 20,000 speakers (Harrigan
et al., 2017), provides relatively large amounts of
standardized text for a North American language
(Arppe et al., forthc.). The sources range from
biblical texts (Mason and Mason, 2000), to nar-
ratives (Vandall and Douquette, 1987), and even
interviews between fluent speakers (Masuskapoe,
2010). The texts used for TTS synthesis in this
paper are described in Section 4.

4 Materials

4.1 Training Data

This study uses two varieties of materials: training
data and a TTS toolchain. Training data comes
in the form of the biblical texts of Psalms from
Canadian Bible Society (2005). These texts, nar-
rated by Dolores Sand, are accompanied by tran-
scriptions in the SRO (Canadian Bible Society,
2005). The audio files are uncompressed, stereo
audio with a 16 bit depth, 44,100 sampling fre-
quency. Not all Psalms were available as an au-
dio recording, though 52 files totaling 2 hours 24
minutes and 50 seconds in length were available
as training data. Because the toolchain discussed
below requires files with only a single channel for
input, the Psalm recordings were converted into
mono-channel files using the SoX utility (Bagwell,
1998–2013). Finally, the computation was com-
pleted on a virtual server with an Intel 2.67 GHz
Xenon X5650 processor and 16 GB of RAM.
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4.2 Tool Chain

Simple4All (Simple4All, 2011–2014) aims to de-
velop lightly or unsupervised speech recogni-
tion/synthesis (Simple4All, 2011–2014). Two of
the major outputs of the project are ALISA, a
lightly supervised alignment system (Simple4All,
2014), and Ossian, a front-end synthesizer (Sim-
ple4All, 2013-2014). ALISA aligns based on ten
minutes of pre-training data which has been man-
ually segmented (Stan et al., 2013). The system
learns and then attempts to align the rest of the
training data and text transcript provided to it (Stan
et al., 2013) (as detailed later, ALISA alignment
was not particularly successful, and so hand align-
ment was conducted.). Resulting from alignment
is a set of utterance sound files and text files with
the respective orthographic representation. These
files are then fed directly to into Ossian which uses
these data to train itself and produces a synthe-
sized voice. Ossian itself is a ‘collection of Python
code for building text-to-speech (TTS) systems,
with an emphasis on easing research into build-
ing TTS systems with minimal expert supervision’
(Simple4All, 2013-2014).

5 Evaluation

Two iterations of the synthesizer were created.
The first iteration was built on alignment from AL-
ISA. In order to evaluate the synthesized voice, a
combination of various common metrics was used.
Both functional (i.e. intelligibility of the sys-
tem (Hinterleitner, 2017, 24)) and judgment (i.e.
how pleasant the system is to use) tests were im-
plemented. Ideally, at least a dozen participants
would be used, but due to the limited number of
people who speak and are literate in the language,
and being mindful of the need to not bias speakers
for future non-pilot level tests, one speaker was
deemed appropriate for each iteration of the syn-
thesis3.

For functional level analysis, a modification of
the Cluster Identification Task (Jekosch, 1992)
was used. In this modified task, basic V, CV,
and CVC syllables (not words) were randomly

3The second iteration actually contained two evaluations
by the same participant due to the initial evaluation tasks
containing non standard spellings in the Semanticaly Unpre-
dictable Sentence and Judgment tasks. Only these tasks were
re-administered (with new stimuli verified for orthographic
consistency). The first evaluation of the second synthesizer
was substantially similar to the second evaluation and so will
not be detailed in this paper.

presented (at least twice, but as often as the
participant requests) after which the participant
was asked to write down what they heard. Al-
though complex onsets and codas exist in Plains
Cree, they are certainly less frequent, as discussed
above. Although each possible syllable would ide-
ally be presented at least once, the number of eval-
uations would total nearly 2000 items, a task too
onerous for a single session and participant. In or-
der to acclimate the participants, three test scenar-
ios using English syllables from a native English
speaker (/skwi/, /cle/, and /ram/) were run.

In addition to the Cluster Identification Task,
the participant was asked to take part in a modified
Semantically Unpredictable Sentence task (Benoı̂t
et al., 1996). In this task the participant was asked
to listen to sentences that, while morphosyntac-
tically correct, were semantically unlikely such
as ê-mowat sêhkêw, ‘You eat the car’, where ê-
mowat licenses any grammatically animate noun
like sêhkêw, ‘car,’ but is much more likely to refer
to food than a vehicle.

After listening to the stimuli at least twice, the
participant was asked to write down what they
heard. This test produces a situation wherein
speakers are less able to rely on context for dis-
crimination (Hinterleitner, 2017) while making
use of real words rather than just monosyllables.
A total of 5 semantically regular sentences were
also presented so as to investigate how well our
system works. As we would expect a greater level
of comprehension in these sentences, any other re-
sult would indicate very poor performance.

To assess the pleasantness of synthesis, a set of
scales with opposing metrics was created. Scales
where end points fall beyond metric markings
were used (see Figures 1 and 2 for an example).
This was done so as to avoid the tendency for par-
ticipants to not rate at the ends of scales and the
tendency for individuals to have difficulty in dis-
tinguishing a stimuli that is either terrible or very
good (Hinterleitner, 2017). The scales were com-
prised of the following pairs: Natural vs. Unnatu-
ral, Pleasant vs. Unpleasant, Quick vs. Slow, and
overall Good vs Bad. Judgments were elicited for
two utterances: one a an excerpt from the training
data, and one a synthesis of an utterance pulled
from a corpus (Arppe et al., forthc.; Ahenakew,
2000; Bear et al., 1992; Kâ-Nı̂pitêhtêw, 1998; Ma-
suskapoe, 2010; Minde, 1997; Vandall and Dou-
quette, 1987; Whitecalf, 1993). The use of non-
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synthesized data was used as a point of compari-
son. The identities of these stimuli were not made
known to the participant. Because the participant
was a former language instructor, general com-
ments regarding the usefulness of the synthesizer
were invited.

6 Results

Although the methodologies described above were
carefully considered for the task of evaluation, ma-
jor modifications had to be made once the evalu-
ation was actually undertaken. The first iteration
of the synthesizer proved difficult for evaluation,
with the participant barely able to complete most
of the tasks. According to the participant, synthe-
ses were unintelligible, unpleasant, too quick, and
overall bad. Listening to the syntheses through
headphones was so jarring that evaluation was
done through basic laptop speakers. Judgment as-
sessment of longer utterances was extremely diffi-
cult for the participant, and stimuli were deemed
to be too long. The cause of this poor synthesis
is likely due to the fact that ALISA managed to
align only 24 minutes of nearly 2.5 hours of train-
ing data.

To respond to this issue, the entirety of the train-
ing data was aligned by hand. This second itera-
tion of the synthesizer was substantially more nat-
ural, intelligible, and pleasant. As the first partic-
ipant’s schedule was quite busy, a second partic-
ipant was recruited. This participant was a male,
middle-aged former Cree-language teacher who is
proficient in the SRO. The following section de-
tails the evaluation of the second iteration of the
speech synthesizer. All stimuli were presented in
a randomized order.

6.1 Modified Cluster Identification Task

So as not to exhaust the participant, 70 clusters
were presented. Of the tested clusters, 21 were
identified correctly in their entirety. Another 16
were classified as minor errors (accepted variation
in the orthograhy) such as 6 instances of <ê> be-
ing written as <ı̂> (likely the result of the two
phonemes overlapping in vowel space (Harrigan
and Tucker, 2015) as well as perhaps the influence
of English orthography) and 7 long vowels be-
ing written as short vowels following by an <h>
(a common non-standard way of indicating that
a vowel is long). These two types make up the
majority (13/16) of minor errors. Together, mi-

nor errors and correctly identified clusters make
up the majority of responses (53%). There were
11 items where the onset was misheard, with the
majority of these (6) being <c> misheard as <s>.
Given that <c> represents /ts/, this is not wholly
surprising. Remaining error types were smaller in
their tokens: 3 clusters had a vowel identified cor-
rectly, but the participant missed the onset entirely;
4 vowels were identified with the correct quality
but the wrong length; 6 clusters showed the wrong
quality but the correct length; and 4 clusters were
heard as incorrect vowel with incorrect lengths.
See Table 6.1 for a full list of stimuli and results.
A highlighted row indicates a sentence where the
participant’s transcription deviated from the input.
Boldface letters indicate where the deviance oc-
curred.

6.2 Semantically Unpredictable Sentences

Semantically Unpredictable sentences showed
similar results. All sentences where the partic-
ipant’s transcriptions varied from the SRO input
were semantically unpredictable. The differences
in transcription were nearly always restricted to
differences in vowel length. In the one case where
vowel quality differed (kikı̂-sı̂kinik minôs), the er-
ror was an instance of input <ı̂> being written by
the participant as <ê>. As mentioned previously,
this variation is unsurprising due to overlapping
vowel spaces. Table 6.2 summarizes the evalua-
tion of the SUS task. Those sentences preceded
by a hash-mark are semantically unpredictable,
while those without are semantically predictable.
As above, a highlighted row indicates a sentence
where the participant’s transcription deviated from
the input, and boldface letters indicate where the
deviance occurred.

6.3 Judgment Tasks

Impressionistic judgment of the synthesizer shows
that the system performed worse than an actual
native-speaker production. Figure 1 represent the
evaluation of the synthesizer, and Figure 2 the rep-
resentation of the natural utterance. Unlike the
first iteration of the synthesizer (which was al-
most entirely rated as negatively as possible on
all scales), the second synthesizer was rated as
somewhat unnatural, unpleasant and bad, but not
drastically so. The synthesizer was rated as only
slightly slower than the middle ground between
quick and slow. The naturally produced stimuli
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Stimulus Heard Stimulus Heard

kit kit yit it
tit kit wiit wiit
coot ot moot moht
sat sat wot wot
woot rot niit neet
maat maat siit seet
miit miit soot sat
wit wit hot hot
taat taat sit sit
hat hat seet seet
keet kit naat naat
kot pat mot not
kiit keet pot pat
pat at yeet yit
teet NA sot sot
cot sot cit sit
wat wat paat paat
noot not heet hiht
kaat kaat toot toht
not not ceet siht
haat hat hiit neht
yaat yaat pit pit
yot eewt kat kat
ciit seet piit peet
koot pat mat mat
tiit teet yat yeet
peet peet tot tot
hoot hoht cat set
neet neet hit ahiht
weet weet nit nit
nat nat poot poht
tat tat caat saht
yiit eet waat waht
yoot eewt meet miht
mit mit saat seht

Table 1: Cluster Identification Results

showed almost the opposite pattern, being mod-
estly natural, pleasant, good, and slow.

Interestingly, the naturally produced utterance
was not judged to be maximally natural, pleasant,
or good. This is likely due to the fact that the ut-
terance was not of quick or conversational speech,
but rather a performed recording of biblical text.

7 Discussion

Although a synthesizer was developed, alignment
through ALISA was unsuccessful, with just 24
minutes of roughly 2.5 hours correctly aligned

Figure 1: Synthesized Voice Judgment Task Evaluation

Figure 2: Naturally Produced Voice Judgment Task
Evaluation

(19%). According to the developer, Adriana Stan,
despite attempting to create an alignment system
for a wide variety of languages, polysynthetic lan-
guages such as Plains Cree were not considered
or tested; as a result, ALISA’s parameters dispre-
fer very long words, instead assuming an error
in processing (p.c. Adriana Stan, Jan 31, 2018).
Although ALISA allowed for some adjustment
in this respect, changing the average acceptable
length for a word to any extent did not produce any
significant increase in alignment (either by low-
ering or raising this threshold). Further, ALISA
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Input Participant Transcription English Gloss

# ê-pâhpisit sêhkêw ê-pahpisit sêhkêw ‘The car laughs.’
# sı̂winikan pimohtêw sı̂winikan pimohtêw ‘Sugar walks.’
# ê-postiskawacik kinosêwak ê-postiskawacik kinosêwak ‘You put the fishes on.’
awâsis wâpahtam masinahikan awâsis wâpahtam masinahikan ‘A child sees a book’
ê-wiyâtikosit iyiniw ê-wiyâtikosit iyiniw ‘The Indigenous person is happy’
nâpêw ê-mı̂cisot nâpêw ê-mı̂cisot ‘The man is eating’
kinêpik nipâw kinêpik nipâw ‘A snake is sleeping’
#atim kiwı̂-saskamohitin atim kiwı̂-saskamôhı̂tin ‘I am going to put a dog in your mouth.’
#kikı̂-sı̂kinik minôs kikı̂-sêkinik minôs ‘The cat poured you.’
iskwêw pı̂kiskâtisiw iskwêw pı̂kiskâtisiw ‘A woman is sad.’

Table 2: Evaluated Sentences

seemed relatively successful for other agglutinat-
ing languages such as Finnish and Turkish with
similarly long words; this suggests that the issue
with alignment may be more complex than just
word length.

The evaluation of hand-aligned data with Os-
sian synthesizer showed promising results. The
second iteration of the synthesis was relatively
well received by the second participant, who re-
marked that the speech synthesizer, while not per-
fect, was serviceable and represented an exciting
opportunity for language learners. Despite this,
multiple issues arose throughout the evaluation
process. Most significant was the issue of ortho-
graphic proficiency. Because the tasks selected for
this evaluation relied on written responses, only
participants with strong literacy in SRO could be
considered. This is especially problematic for In-
digenous languages of Canada, as many of these
varieties are historically oral languages. Few flu-
ent speakers of Plains Cree actually possess the
level of literacy needed for the evaluation tasks.
This severely restricts who can participate in eval-
uation of the synthesizer. A side effect of this
restriction was the scarce availability of a native
speaker to review the stimuli (as one would pre-
fer not to have reviewers act as participants in the
study), leading to the several orthographic incon-
sistencies in the first evaluation for both iterations
of the speech synthesizer. For the second iteration
of the synthesizer, evaluation was re-administered
for those items with orthographic inconsistencies.
One solution to this issue is to eschew the need
for writing. Instead of writing down what they
hear, participants could be asked to provide word-
to-word translations (insofar as possible) and to
compare these with the intended meaning of the

stimuli. Though this would not address the partic-
ipants’ ability to recognize particular graphemes,
the lack of a need for literacy would allow for
a signficantly larger number of participants than
what would be available when requiring literacy
in the SRO. Alternatively, participants could be
asked to repeat what they have heard, though this
would likely require a complete reworking of stim-
uli.

In building a synthesizer for Plains Cree, the
full Simple4All toolchain proved unreliable. In
addition to the issues faced in ALISA alignment
for Plains Cree, documentation installation of the
software provided multiple challenges with lit-
tle documentation for support. Future endeavors
should consider newer systems such as the Mer-
lin project (Wu et al., 2016) which has been us-
ing Deep Neural Nets (DNN), a form of machine
learning that seem to provide better results than
the Hidden Markov Models (HMMs) used in the
Simple4All project. Although no such compari-
son of DNN vs. other machine learning methods
has been reported for synthesis of North American
languages, DNN based systems such as Google’s
WaveNet report significantly better results than
other techniques such as HMMs (van den Oord
et al., 2016). If continuing to use Simple4All, the
results of this evaluation suggest that one should
not use ALISA for text alignment. In addition,
researchers should consider the use of prebuilt
aligners for languages with similar phoneme in-
ventories. In the case of Plains Cree, given that
the phoneme inventory is a subset of English’s,
one could consider the use of force aligners built
for English with a modified dictionary specific to
Plains Cree. This should be feasible in theory,
though it remains to be seen whether it is useful
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in practice.

In regards to evaluation, the SUS task might
best be abandoned altogether in assessing future
Plains Cree synthesizers. Results showed very lit-
tle difference between semantically unpredictable
sentences and semantically predictable ones. Both
participants noted that the ‘unpredictable’ sen-
tences were, in fact, ungrammatical: the line be-
tween unlikely and allowable is very thin. It would
be interesting to repeat this task with other na-
tive speakers, as it may be a participant-specific
attribute (though this study’s participants had ex-
perience as second-language instructors and were
likely far more familiar with listening, identifying
and interpreting odd, infelicitous, and/or mispro-
nounced utterances than the average speaker). If
this is a tendency that holds across native speak-
ers of Plains Cree, it may be worth investigating
the factors influencing these attitudes (such as a
tendency for speakers of the language to be ei-
ther very novice or very fluent, perhaps leading
to a lack of familiarity or tolerance of variation
as seen in the SUS task). Assuming this attitude
holds for the general population, it would be best
to choose somewhat semantically predictable, but
less frequent, stimuli (e.g. I ate the zebra, where
zebra is more predictable than car, but less pre-
dictable than rabbit) or avoid the SUS task en-
tirely. Of course, this means the confound of se-
mantic predictability endures, though this might
be addressed presenting words in isolation (ac-
cepting that this does not allow for sentence level
prosody to be assessed).

Based on the feedback from the participant, re-
ducing the number of syllables presented would
be beneficial, though the details of how to do so
remain unclear, especially considering that this
study ignored a large portion of possible sylla-
bles. Random sampling could be used by select-
ing simply one type of each sound in each sylla-
ble position (e.g. ensuring there is tested at least
one syllable starting with a stop and ending with
a fricative). Spreading out the set over many par-
ticipants, such that every syllable is evaluated the
same number of times but not by each participant,
is perhaps a better solution as it allows every syl-
lable to be evaluated; in this case, one would have
to analyze results via some sort of mixed-effects
model (where speaker acts as a random effect) to
account for the variation between speakers. Fur-
ther, this method requires many participants, an

inherent restriction in working with minority lan-
guages, especially those of North America. Fi-
nally, the first participant indicated that a few of
the monosyllables, while unattested in dictionar-
ies, were actually vulgarities. As this task was
meant to assess only syllable intelligibility sepa-
rately from word-level intelligibility, and due to
their offensive nature, it is important that future
studies remove these words or at least warn partic-
ipants of their possible presence.

8 Conclusion

This paper presents one of the first parametric syn-
theses of an Indigenous language of Canada, us-
ing the Simple4All packages ALISA and Ossian.
Based on roughly 2.5 hours of speech, this method
of speech synthesis makes use of lightly super-
vised forced alignment to ease the workload re-
quired by the researcher. Although Simple4All
has been used with a variety of languages (Sim-
ple4All, 2011–2014), the forced alignment was
largely unsuccessful with the Plains Cree data. No
conclusive reason could be found to account for
this, though it may be that word length played a
factor. In contrast, the results of the second synthe-
sizer based on hand-aligned training data present
promising results, with many of the stimuli be-
ing understood in their entirety. Although this
second synthesizer was clearly identified as non-
natural speech, its output was intelligible and rela-
tively well received by the participant. Where the
participant’s transcription of stimuli deviated from
the input, deviations generally concerned different
vowel lengths. The results of this paper also in-
dicate that careful consideration must be given to
the evaluation frameworks, since those techniques
that have become established and applied success-
fully for majority languages may not be suitable
for Indigenous languages, at least for those in the
Canadian context.
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Abstract

This paper describes a weighted finite-state
morphological transducer for Crimean Tatar
able to analyse and generate in both Latin and
Cyrillic orthographies. This transducer was de-
veloped by a team including a community mem-
ber and language expert, a field linguist who
works with the community, a Turkologist with
computational linguistics expertise, and an ex-
perienced computational linguist with Turkic
expertise.
Dealing with two orthographic systems in the
same transducer is challenging as they employ
different strategies to deal with the spelling of
loan words and encode the full range of the lan-
guage’s phonemes and their interaction. We de-
velop the core transducer using the Latin or-
thography and then design a separate translit-
eration transducer to map the surface forms to
Cyrillic. To help control the non-determinism
in the orthographic mapping, we use weights to
prioritise forms seen in the corpus. We perform
an evaluation of all components of the system,
finding an accuracy above 90% for morphologi-
cal analysis and near 90% for orthographic con-
version. This comprises the state of the art for
Crimean Tatar morphological modelling, and,
to our knowledge, is the first biscriptual single
morphological transducer for any language.

1 Introduction
This paper presents the development and evalua-
tion of a free/open-source finite-state morphologi-
cal transducer for Crimean Tatar that is able to anal-
yse and generate both Latin and Cyrillic orthogra-
phies.¹ As an example, this transducer can map
between the analysis köy<n><px3sp><loc> ‘in the
village of’ and both of the possible orthographic
forms, in Latin köyünde and in Cyrillic коюнде.

†Emerita
¹The transducer is available in a publicly accessible reposi-

tory at http://github.com/apertium/apertium-crh.

This paper is structured as follows: Section 2
presents background on Crimean Tatar and its or-
thographic systems; Section 3 gives an overview
of the current state of computational analysis of
Crimean Tatar morphology; Section 4 presents cer-
tain challenging aspects of Crimean Tatar morphol-
ogy and their implementation; and Section 5 evalu-
ates the transducer. Finally, Section 6 summarises
possible directions for future work, and Section 7
provides concluding remarks.

2 Crimean Tatar
2.1 Context
Crimean Tatar ([qɯɾɯmtɑtɑɾʧɑ], ISO 639-3: crh)
is an understudied Turkic language of the North-
western Turkic (Kypchak) subgroup (Johanson and
Csató, 1998).² The language also shows a con-
siderable influence from the Southwestern Turkic
(Oghuz) subgroup, acquired via contact with Turk-
ish, as well as more recent influence from the
Southeastern Turkic subgroup, due to the nearly
5-decade-long resettlement of the entire Crimean
Tatar population of Crimea to Central Asia (pre-
dominantly to Uzbekistan) by the Soviet govern-
ment in 1944. It shares some level of mutual intelli-
gibility with other languages in these subgroups, but
is an independent language. The geographical lo-
cation of Crimean Tatar in reference to other NW
(Kypchak) and SW (Oghuz) varieties is shown in
Figure 1.
Currently, about 228,000 speakers of Crimean

Tatar have returned to Crimea, and another 313,000
live in diaspora (Simons and Fennig, 2018). Almost
all speakers of Crimean Tatar are bilingual or mul-
tilingual in Russian and the language of the place
of their exile, such as Uzbek, Kazakh, or Tajik.

²Crimean Tatar and [Kazan] Tatar (tat) happen to share
a name, but are only related in that they are both North-
western Turkic languages—though members of different sub-
subgroups.
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Figure 1: Location of the Crimean Tatar speaking area
(crh) within the Black Sea region, relative to other
Kypchak (Urum – uum, Karachay-Balkar – krc, Nogay
– nog, Kumyk – kum and Kazakh – kaz) and Oghuz lan-
guages (Gagauz – gag, Turkish – tur, and Azerbaijani
– azb and azj).

Crimean Tatar is spoken mostly by the older pop-
ulation, but the usage may be rising, due to the in-
creasing efforts in the community to teach the lan-
guage to the younger generation, despite impedance
caused by the generally unfavourable sociolinguistic
situation.

2.2 Orthographic systems
As previously mentioned, Crimean Tatar can be
written with two orthographic systems, one based
on the Latin alphabet and one based on the Cyrillic
alphabet. Both orthographies are widely used and
have varying degrees of official support. They have
different ways of treating phenomena such as front
rounded vowels, the uvular/velar contrast in obstru-
ents, and loanwords from Russian.
The Latin orthography contains 31 characters,

and uses no digraphs except for foreign sounds in
borrowings. Each phoneme is implemented using
a distinct character; for example ‹o› for the non-
high back rounded vowel and ‹ö› for its front coun-
terpart. The diacritics tilde (‹ñ› for [ŋ]), cedilla
(e.g., ‹ş› for [ʃ]) and diaeresis (e.g., ‹ö› for [ø]) are
used as components of characters for sounds that
are not covered in a straightforward way by the ba-
sic Latin alphabet. In the Latin orthography, Rus-
sian words can be treated as adapted to the phonol-
ogy of Crimean Tatar, such as bücet ‘budget’—as
opposed to *byudjet, a more faithful rendering in
the Latin orthography of the pronunciation of the
Russian бюджет. However, most loanwords are
pronounced as in Russian, yet are rendered more
faithfully to their Russian spelling than to their Rus-
sian pronunciation; for example, konki for Rus-

sian коньки [kɐnʲˈkʲi] ‘skates’ is pronounced as in
Russian and not *[konki] as its Latin-orthography
spelling would suggest.
The Cyrillic orthography contains the 33 charac-

ters of the Russian alphabet and four diagraphs for
sounds not found in Russian: ‹дж› [ʤ], ‹гъ› [ʁ], ‹къ›
[q], and ‹нъ› [ŋ]. The additional sounds [ø] and [y]
are implemented by either the use of the “soft sign”
‹ь› in conjunction with the letters for [o] ‹о› and [u]
‹у› or by using the corresponding “yoticised” vowel
letters ‹ё› and ‹ю›, respectively; the particular sys-
tem is clarified below. Russian words are spelled as
in Russian, including the use of hard and soft signs
and Russian phonological patterns. An example is
коньки ‘skates’, in which the ‹ь› indicates that the
[n] is palatalised.
Table 1 shows the basic mapping between the two

orthographic systems.

b c ç d f g ğ h j k l
б дж ч д ф г гъ х ж к л

m n ñ p q r s t v y z
м н нъ п къ р с т в й з

a â ı o u e i ö ü
а, я я ы о, ё у, ю э, е и о, ё у, ю

Table 1: The basic correspondences between the charac-
ters of the two Crimean Tatar orthographies.

While the Latin orthography represents the front
vowels [ø] and [y] simply as ‹ö› and ‹ü›, in the Cyril-
lic orthography they are represented in one of the
following ways.
With the letters ‹о› and ‹у›:

• With a front-vowel character (‹и›, ‹е›) or one of
the “yoticised” vowels (‹ё›, ‹ю›) following the
subsequent consonant. This strategy is usually
limited to the first syllable of a [multisyllable]
word when in certain consonant contexts, and
is more prevalent in open syllables. Examples
include учюнджи [yʧ-ynʤi] ‘third’, кунюнде
[kyn-yn-de] ‘on the day of’, болип [bøl-ip]
‘having divided’, and муче [myʧe] ‘body part’.

• Either with the “soft sign” ‹ь› following the sub-
sequent consonant or without if a “soft conso-
nant” (i.e., velar pair to a uvular consonant),
like [k] or [ɡ], follows the vowel. This strat-
egy is generally used only in the first sylla-
ble of a word when there is a following coda
consonant. Examples include учь [yʧ] ‘three’,
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куньлери [kyn-ler-i] ‘days of’, бoльмеди [bøl-
me-di] ‘did not divide’, кок [køk] ‘sky’, and
букти [byk-ti] ‘he/she/it bent’.

With the “yoticised” vowel letters ‹ё› and ‹ю›:

• When not in the first syllable of a word.
Examples include юзю [jyz-y] ‘his/her face’,
тёксюн [tøk-syn] ‘let it spill’, and мумкюн
[mymkyn] ‘possible’. Note that [ø] almost
never occurs outside of the first syllable of a
word.

• When in the first syllable of a word and pre-
ceded by a consonant. Examples include
тюшти [tyʃ-ti] ‘fell’, дёрт [dørt] ‘four’, and
чёпке [ʧøp-ke] ‘to the rubbish’.

The difference between when the letters ‹о› or ‹у›
are used as opposed to ‹ё› or ‹ю› in first syllables
of words seems to in part depend on the values of
surrounding consonants. However, a certain level of
idiosyncrasy exists, as seen in pairs like козь [køz]
‘eye’ and сёз [søz] ‘word’, кёр [kør] ‘blind’ and корь
[kør] ‘see’, orюз [jyz] ‘hundred’ andюзь [jyz] ‘face’.
The “yoticised” vowel letters ‹ё› and ‹ю› also rep-

resent the vowels [o] and [u] when following [j] as
well as [ø] and [y] when following [j]—sound com-
binations that can occur word-initially or after an-
other vowel (usually rounded and of corresponding
backness, though note that [ø] and [o] are extremely
uncommon outside of the first syllable of a word).
Hence there is in principle the potential for system-
atic ambiguity between rounded back vowels pre-
ceded by [j] (‹ё› [jo] and ‹ю› [ju]) and rounded front
vowels preceded by [j] (‹ё› [ø] and ‹ю› [y]). In prac-
tice it is difficult to identify examples of this, but
pairs like ют [jut] ‘swallow’ and юз [jyz] ‘hundred’
demonstrate the concept.
Furthermore, [j] is represented in the Cyrillic or-

thography either by й (e.g., къой [qoj] [put]), or
with a yoticised vowel letter (e.g., къоюл [qoj-ul]
‘be put’); i.e., these letters are involved in a many-
to-many mapping with the phonology.

3 Prior work
Altıntaş and Çiçekli (2001) present a finite-state
morphological analyser for Crimean Tatar. Their
morphological analyser has a total of 5,200 stems
and the morphotactics³ are based on a morphologi-
cal analyser of Turkish. They explicitly cover only

³The morphotactics of a language is the way in which mor-
phemes can be combined to create words.

the native part of the vocabulary, excluding loan
words, and use an ASCII representation for the or-
thography. Their analyser is not freely available for
testing so unfortunately we could not compare its
performance to that of ours.

4 Methodology

To implement the transducer we used the Helsinki
Finite-State Toolkit, HFST (Lindén et al., 2011).
This toolkit implements the lexc and twol for-
malisms and also natively supports weighted FSTs.
The former implements morphology, or mappings
between analysis and morphological form, such as
köy<n><px3sp><loc> : köy>{s}{I}{n}>{D}{A},
while the latter is used to ensure the correct
mapping between morphological form and or-
thographic (or “phonological”) form, such as
köy>{s}{I}{n}>{D}{A} : köyünde. When com-
pose-intersected, the transducers generated from
these modules result in a single transducer map-
ping the two ends with no intermediate form,
e.g., köy<n><px3sp><loc> : köyünde.
The choice to model the morphophonology us-

ing twol as opposed to using a formalism that
implements sequential rewrite rules may be seen
as controversial. Two-level phonological rules are
equivalent in expressive power to sequential rewrite
rules (Karttunen, 1993); however, from the point of
view of linguistics, they present some differences in
terms of how phonology is conceptualised. Two-
level rules are viewed as constraints over a set of
all possible surface forms generated by expanding
the underlying forms using the alphabet, and oper-
ate in parallel. Sequential rewrite rules, on the other
hand, are viewed as a sequence of operations for
converting an underlying form to a surface form. As
such, sequential rules result in intermediate forms,
whereas the only levels of representation relevant
to two-level rules are the morphological (under-
lying) form and the phonological (surface) form.
While it may not be relevant from an engineering
point of view, we find more cognitive plausibility
in the two-level approach. Furthermore, the com-
putational phonologist on our team finds the two-
level model much less cumbersome to work with
for modelling an entire language’s phonology than
sequential rewrite rules. Readers are encouraged to
review Karttunen (1993) for a more thorough com-
parison of the techniques.
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4.1 Lexicon
The lexicon was compiled semi-automatically. We
added words to the lexicon by frequency, based
on frequency lists from Crimean Tatar Bible⁴ and
Wikipedia⁵ corpora (see Section 5.1 for sizes). Ta-
ble 2 gives the number of lexical items for each of
the major parts of speech. The proper noun lexi-
con includes a list of toponyms extracted from the
Crimean Tatar Wikipedia.

Part of speech Number of stems
Noun 6,271
Proper noun 4,123
Adjective 1,438
Verb 1,007
Adverb 87
Numeral 40
Pronoun 31
Postposition 21
Conjunction 20
Determiner 16
Total: 13,054

Table 2: Number of stems in each of themain categories.

4.2 Tagsets
The native tagset of the analyser is based on the
tagsets used by other Turkic-language transducers⁶
in the Apertium platform.⁷ In addition we provide
a mapping from this tagset to one compatible with
Universal Dependencies (Nivre et al., 2016) based
on 125 rules and a set overlap algorithm.⁸ The rules
are composed of triples of (lemma, part of speech,
features) and are applied deterministically longest-
overlap first over the source language analyses.

4.3 Morphotactics
The morphotactics of the transducer are adapted
from those of the Kazakh transducer described by
Washington et al. (2014). The nominal morpho-
tactics are almost identical between Kazakh and
Crimean Tatar. The verbal morphotactics are rather
different, and we here followed Kavitskaya (2010).

⁴Compiled by IBT Russia/CIS, https://ibt.org.ru
⁵Content dump from theCrimean TatarWikipedia, https:

//crh.wikipedia.org, dated 2018-12-01.
⁶See for exampleWashington et al. (2016) for a description.
⁷Available online at http://www.apertium.org.
⁸Available in the repository as texts/crh-feats.tsv.

4.4 Transliterator
The transliterator is implemented as a separate
substring-to-substring lexc grammar and twol
ruleset.
The lexc grammar defines a transducer which

converts from the Latin orthography to a string
where placeholders are given for the hard sign, soft
sign, and some digraphs which are single characters
in the Cyrillic orthography (e.g., ts = ц). The out-
put may be ambiguous, for example the input string
şç produces both şç (analysis, preceding translitera-
tion) and a special symbol щ (also analysis) standing
for Cyrillic щ (surface form). This is necessary be-
cause şç may map to either щ (borşç = борщ [borɕ]
‘borsch’) or ‹шч› (işçi = ишчи [iʃʧi] ‘worker’).
The twol ruleset defines a transducer which then

maps the Latin string produced to strings in Cyril-
lic via the alphabet, and applies a set of constraints
to restrict the possible combinations. All remaining
theoretically valid mappings are kept. An example
of one of these constraints is shown in Figure 2.

”e as э”
e:э <=> .#. _ ;

[ e: | a: | i: | ü: ] _ ;

Figure 2: An example of a twol constraint used in the
mapping of Latin strings to Cyrillic strings. This con-
straint forces Latin ‹e› [e] to be realised as Cyrillic ‹э› in-
stead of Cyrillic ‹е› (which would in turn stand for [je])
at the beginning of the word and after certain vowels.

The resulting transducer takes surface forms in
Latin script, and outputs surface forms in Cyrillic
script. In order to get an analyser which analy-
ses Cyrillic, we then composed the original [Latin]
transducer with the transliteration transducer.
In order to be able to choose the orthographically

correct variant for generation in the case of ambi-
guity in the conversion, we tried two corpus-based
methods.
The first method we tried was simply to weight

surface forms we saw in the corpus with a nega-
tive weight; since our transducer interprets lower
weights as better, forms which were previously seen
would always be given preference over those gen-
erated by the model on the fly. This was done by
making a negative-weight identity transducer of the
surface forms, composing with the transliteration
transducer, and taking the union with the translit-
eration transducer alone.
The second method was to estimate probabilities

for the generated transliterations using character n-
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gram frequencies from the corpus. We used a par-
ticularly simplistic estimation technique: fix n ≥ 1.
We collect k-grams for k ≤ n, the collections of
size nk with redundancy. The probability assigned
to the k-gram x is #x/nk. Weights are chosen to
be the negative logarithm of the probability. The
unaugmented transliteration transducer is then com-
posed with this new weighted transducer before be-
ing composed with the morphological transducer.
Transducers produced by the two methods are

unioned; the result is then composed with the mor-
phological transducer. Generated transliterations
thus have many paths which they can follow to ac-
ceptance, assigning various weights. If the translit-
eration is a surface form observed in the training
corpus, it is assigned a negative weight (given ab-
solute preference). Unobserved transliterations are
assigned positive weights based on possible segmen-
tations; k-character segments are assigned weights
from the k-gram counters, and the weight of a seg-
mentation is the sum of the weights of the segments.

4.5 Error model

While working on morphological models for lan-
guages with a less-than-stable written norm, or
where there is little support for proofing tools or
keyboards, it is desirable to be generous with what
forms are accepted while being conservative with
what forms are generated. Orthographic variation is
inevitable, and if we want to create a high coverage
resource, then we should also take this variation into
account. For example, in the corpus the locative of
Belarus (the country) is written Belarusde 4 times,
Belarusta twice and Belaruste 1 time. The norma-
tive spelling, to fit with the pronunciation [belarus]
should be Belarusta; however, we would also like to
be able to provide an analysis for the other variants.
Based on an informal examination of 1, 000 random
tokens in the news and encyclopaedic corpora, we
estimate that at least 0.8% of tokens in these cor-
pora constitute non-normative orthographic forms
of this type.
Our approach again is to use twol. First the

rules for vowel harmony and other phonological
phenomena were removed from the twol trans-
ducer that implements the normative orthography,
leaving only unconstrained symbol mappings. This
was then composed with the lexicon to produce
a transducer which has all of the possible phono-
logical variants (much like a fully expanded ver-
sion of the lexc transducer). This was then sub-

tracted from the normative transducer and a tag
<err_orth> was appended to the analysis side of
all remaining forms to indicate orthographic error,
This was output into a transducer which accepts
any phonological variant that was not normative
and give an analysis with an extra tag. This was
unioned with the normative transducer to produce
the final analyser. This approach allows us to anal-
yse prescriptively incorrect variants like Belaruste as
Belarus<np><top><loc><err_orth>.

5 Evaluation
We have evaluated the morphological transducer in
several ways. We computed the naïve coverage and
the mean ambiguity of the analyser on freely avail-
able corpora (Section 5.1) as well as its accuracy
(precision and recall) against a gold standard (Sec-
tion 5.2). Additionally, we evaluated the accuracy
of the transliteration transducer (Section 5.3).

5.1 Analyser coverage
We determined the naïve coverage and mean am-
biguity of the morphological analyser. Naïve cov-
erage is the percentage of surface forms in a given
corpus that receive at least one morphological anal-
ysis. Forms counted by this measure may have other
analyses which are not delivered by the transducer.
The mean ambiguity measure was calculated as the
average number of analyses returned per token in
the corpus. These measures for three corpora, span-
ning both orthographies, are presented in Table 3.⁹

Corp. Orthog. Tokens Cov. Ambig.
Bible Cyr 217,611 90.9% 1.86
Wiki Lat 214,099 92.1% 1.86
News Lat 1,713,201 93.7% 2.12

Table 3: Naïve coverage andmean ambiguity of the anal-
yser on three corpora.

The transducer provides analyses for over 90%of
tokens in each corpus, with each token receiving an
average of around two analyses.

5.2 Transducer accuracy
Precision and recall are measures of the average
accuracy of analyses provided by a morphological
transducer. Precision represents the number of the

⁹The Bible and Wikipedia corpora are those described in
Section 4.1, and the News corpus is content for the years 2014–
2015 extracted from http://ktat.krymr.com/.
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analyses provided by the transducer for a form that
are correct. Recall is the percentage of analyses that
are deemed correct for a form that are provided by
the transducer.
To calculate precision and recall, it was necessary

to create a hand-verified list of surface forms and
their analyses. We extracted around 2,000 unique
surface forms at random from the Wikipedia cor-
pus, and checked that they were valid words in the
languages and correctly spelled. When a word was
incorrectly spelled or deemed not to be a form used
in the language, it was discarded.¹⁰
This list of surface forms was then analysed with

the most recent version of the analyser, and around
500 of these analyses were manually checked.
Where an analysis was erroneous, it was removed;
where an analysis was missing, it was added. This
process gave us a ‘gold standard’ morphologically
analysed word list of 448 forms.¹¹
We then took the same list of surface forms and

ran them through the morphological analyser once
more. Precision was calculated as the number of
analyses which were found in both the output from
the morphological analyser and the gold standard,
divided by the total number of analyses output by
the morphological analyser. Recall was calculated
as the total number of analyses found in both the
output from themorphological analyser and the gold
standard, divided by the number of analyses found
in the morphological analyser plus the number of
analyses found in the gold standard but not in the
morphological analyser.
After comparing with the gold-standard in this

way, precision was 94.98% and recall was 81.32%.
Most of the issues with recall were due to miss-

ing stems in the lexicon, primarily nouns and proper
nouns.¹² Regarding the precision, common issues
included incorrect categorisation in the lexicon, and
dubious forms, such as the imperative of kerek-
‘need’, which is in the analyser and is a hypothet-
ically possible form, but appears not to be possible
in practice.

5.3 Transliterator accuracy
We evaluated the transliteration component on the
headwords from a bilingual Crimean Tatar–Russian
dictionary that has been published in both Cyril-

¹⁰Available in the repository as dev/annotate.txt.
¹¹Available in the repository as dev/annotate.all.txt.
¹²However, note that the recall number may be somewhat

inflated, as thinking of missing analyses for already analysed
words is particularly difficult.

lic and Latin orthographies.¹³ We created a list
of Cyrillic–Latin correspondences by aligning the
headwords automatically based on an automated
word-by-word comparison of the definitions in
Russian, for a total of 14, 905 unique entries.

141 entries (~1%) had comments which did not
match word-for-word; while it is possible that these
could be corrected by hand, we discarded them. We
then fed the Latin entries to the full transliteration
transducer and evaluated against the corresponding
Cyrillic entry.
Table 4 shows the performance of the transliter-

ator for the different methods. In this case, preci-
sion is the percentage of predictions which are cor-
rect, recall is the percentage of words for which
a correct transliteration is predicted, and the F -
score is the harmonic mean of the two: F−1 =
mean(Prec−1,Rec−1).

Method States Precision Recall F-score
– 114 53.0 98.4 68.9
1-gram 2,030 93.4 93.5 93.5
2-gram 17,382 94.1 94.2 94.1
3-gram 99,761 94.0 94.1 94.1
4-gram 290,201 94.4 94.6 94.5
5-gram 577,926 95.1 95.2 95.2
6-gram 924,719 95.5 95.6 95.5
7-gram 1,282,917 95.4 95.6 95.0

Table 4: Performance of the transliterator using differ-
ent methods. States gives a measure of the size of the
generated FST.

Withoutn-grams, there is no attempt to filter pro-
posed transliterations; that is, this “null” method
generates all possible transliterations according to
the combined phonological-morphological trans-
ducer. It demonstrates the theoretical limit of re-
call. Precision dramatically increases with the in-
troduction of n-grams, as expected. Precision in-
creases with more n-grams, levelling off at just over
95%. Recall drops from the maximum of 98.4%
(the theoretical maximum the n-gram system can
hope to attain); as the quality of the statistical filter
increases, so does recall, until it levels off at 95.6%.
The problems with the transliteration model con-

sist almost entirely of issues related to the presence
of hard and soft signs in Cyrillic spellings (account-
ing for 492 of 1007, or 48.9%, of errors), incorrect
vowels, mostly related to yoticisation (accounting
for 469, or 46.6%, of errors), and issues correctly

¹³Available from http://medeniye.org/node/984.
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predicting “ц” versus “тс” (accounting for 40, or 4%
of errors). These errors typically arise in loanwords,
where the correct Cyrillic spelling is often impossi-
ble to predict from the Latin orthography. Accuracy
regarding these issues could likely be improved by
having a larger and more representative corpus of
Crimean Tatar in Cyrillic with which to train the n-
gram models, or by attempting to model the loan-
word system.

6 Future work

The performance of the n-grammodel could be im-
proved by modelling the predictability of the or-
thography in n-grams and with a sliding window
to filter out unlikely concatenations of common n-
grams.
Aside from expanding the lexicon, the trans-

ducer forms part of a machine translation sys-
tem from Crimean Tatar to Turkish being devel-
oped in the Apertium platform. There is also
the prospect of applying it to dependency pars-
ing for Crimean Tatar, and there have been some
preliminary experiments in this direction (Ageeva
and Tyers, 2016). We would also like to apply
the approach for dealing with multiple scripts to
other Turkic languages, such as Uzbek, Kazakh, or
Karakalpak, where more than one widely-used nor-
mative orthography is in use. An additional advan-
tage of our approach is that when orthographic sys-
tems are replaced, as is currently occurring in Kaza-
khstan for Kazakh, there is no need to completely
rewrite an existing mature transducer; instead, a
supplemental transliteration transducer can be con-
structed.

7 Concluding remarks

The primary contributions of this paper are a wide-
coverage morphological description of Crimean
Tatar able to analyse and generate both Cyrillic
and Latin orthographies, and a general approach to
building biscriptual transducers.
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Abstract

Neural encoder-decoder models are usually
applied to morphology learning as an end-to-
end process without considering the underly-
ing phonological representations that linguists
posit as abstract forms before morphophono-
logical rules are applied. Finite State Trans-
ducers for morphology, on the other hand, are
developed to contain these underlying forms
as an intermediate representation. This pa-
per shows that training a bidirectional two-step
encoder-decoder model of Arapaho verbs to
learn two separate mappings between tags and
abstract morphemes and morphemes and sur-
face allomorphs improves results when train-
ing data is limited to 10,000 to 30,000 exam-
ples of inflected word forms.

1 Introduction

A morphological analyzer is a prerequisite for
many NLP tasks. A successful morphological an-
alyzer supports applications such as speech recog-
nition and machine translation that could provide
speakers of low-resource languages access to on-
line dictionaries or tools similar to Siri or Google
Translate and might support and accelerate lan-
guage revitalization efforts. This is even more
crucial for morphologically complex languages
such as Arapaho, an Algonquian language indige-
nous to the western USA. In polysynthetic lan-
guages such as Arapaho, inflected verbal forms
are often semantically equivalent to whole sen-
tences in morphologically simpler languages. A
standard linguistic model of morphophonology
holds that multiple morphemes are concatenated
together and then phonological rules are applied
to produce the inflected forms. The operation of
phonological rules can reshape the string of fixed
morphemes considerably, making it difficult for
learners, whether human or machines, to recreate
correct forms (generation) from the morpheme se-

quence or to analyze the reshaped inflected forms
into their individual morphemes (parsing).

In this paper we describe an experiment in
training a neural encoder-decoder model to repli-
cate the bidirectional behavior of an existing finite
state morphological analyzer for the Arapaho verb
(Kazeminejad et al., 2017). When a language is
low-resource, natural language processing needs
strategies that achieve usable results with less data.
We attempt to replicate a low-resource context by
using a limited number of training examples. We
evaluate the feasibility of learning abstract inter-
mediate forms to achieve better results on various
training set sizes. While common wisdom regard-
ing neural models has it that, given enough data
(Graves and Jaitly, 2014), end-to-end training is
usually preferable to pipelined models, an argu-
ment can be made that morphology is an excep-
tion to this: learning two regular mappings sepa-
rately may be easier than learning a single com-
plex one. In Liu et al. (2018), adressing a related
task, noticeably better results were reached for
German, Finnish, and Russian when a neural sys-
tem was first tasked to learn morphosyntactic tags
than when it was tasked to produce an inflected
form directly from uninflected forms and context.
These three languages are morphologically com-
plex or unpredictable, but marginally better results
were achieved for the less complex languages.

2 Arapaho Verbs

Arapaho is a member of the Algonquian (and
larger Algic) language family; it is an aggluti-
nating, polysynthetic language, with free word
order (Cowell and Moss Sr, 2008). The lan-
guage has a very complex verbal inflection sys-
tem, with a number of typologically uncommon
elements. A given verb stem is used either
with animate or inanimate subjects for intransi-
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tive verbs (tei'eihi- ‘be strong.animate’ vs. tei'oo-
‘be strong.inanimate’), and with animate or inan-
imate objects for transitive verbs (noohow- ‘see
s.o.’ vs. noohoot- ‘see s.t.’). For each of these
categories, the pronominal affixes/inflections vary
in form. For example, 2SG with intransitive, ani-
mate subject is /-n/, while for transitive, inanimate
object it is /-ow/ (nih-tei'eihi-n ‘you were strong’
vs. nih-noohoot-ow ‘you saw it’).

All stem types can occur in four different verbal
orders, whose function is primarily modal. These
verbal orders each use different pronominal af-
fixes/inflections as well. Thus, with four different
verb stem types and four different verbal orders,
there are a total of 16 different potential inflec-
tional paradigms for any verbal root, though there
is some overlap in the paradigms, and not all stem
forms are possible for all roots.

Arapaho also has a proximate/obviative sys-
tem, which designates pragmatically more- and
less-prominent participants. “Direction-of-action”
markers included in inflections do not correspond
to true pronominal affixes. Thus nih-noohow-oot
‘more important 3SG saw less important 3S/PL’
vs. nih-noohob-eit ‘less important 3SG/PL saw
more important 3S’. The elements -oo- and -ei-
specify direction of action, not specific persons or
numbers of participants.

Arapaho has both progressive and regressive
vowel harmony, operating on /i/ and /e/ respec-
tively. This results in alternations in both the
inflections themselves, and the final elements
of stems, such as noohow-un ‘see him!’ vs.
niiteheib-in ‘help him!’, or nih-ni'eeneb-e3en ‘I
liked you’ vs. nih-ni'eenow-oot ‘he liked her’.

The Arapaho verb, then, is subject to com-
plicated morphophonological processes. For ex-
ample, the underlying form of the word ‘we
see you’ concatenates the transitive verb stem
with animate object (TA) noohow ‘see’ and the
‘1PL.EXCL.SUBJ.2SG.OBJ’ suffix -een. This
underlying form undergoes significant transforma-
tion after morphophonological rewrite rules are
applied. An initial change (IC) epenthesizes -en
before the first vowel in the verb stem because it
is a long vowel and because the verb is affirmative
present. Then vowel harmony is at work, chang-
ing n-en-oohow-een to n-on-oohow-een. Finally a
consonant mutation rule changes w to b, producing
the surface form nonoohobeen (cf. Figure 1).

3 Finite State Model

One of the clear successes in computational mod-
eling of linguistic patterns has been finite state
transducer (FST) models for morphological anal-
ysis and generation (Koskenniemi, 1983; Beesley
and Karttunen, 2003; Hulden, 2009; Lindén et al.,
2009). An FST is bidirectional, able to both parse
inflected word forms and generate all possible
word forms for a given stem (Beesley and Kart-
tunen, 2003). Given enough linguistic expertise
and time investment, FSTs provide the capability
to analyze any well-formed word in a language.

The Arapaho FST model used in this paper
was constructed with the foma finite-state toolkit
(Hulden, 2009). It used 18,559 verb stems taken
from around 91,000 lines of natural discourse in
a large transcribed and annotated spoken corpus
of Arapaho, parts of which are publicly available
in the Endangered Languages Archive (ELAR).1.
All possible basic inflections occur in the corpus.
The FST produces over 450,000 inflected forms
from the stems.

The FST is constructed in two parts, the first be-
ing a specification of the lexicon and morphotac-
tics using the finite-state lexicon compiler (lexc),
a high-level declarative language for effective lex-
icon creation, where concatenative morphologi-
cal rules and morphological irregularities are ad-
dressed (Karttunen, 1993). The first part pro-
duces intermediate, abstract “underlying” forms.
These forms concatenate the appropriate mor-
phemes from the lexicon in the correct order, (e.g.
noohoween in Figure 1) but are not well-formed
words in the language.

The second part of the FST implements the
morphophonological and phonological rules of the
language using “rewrite rules”. These rules apply
the appropriate phonological changes to the inter-
mediate forms in specified contexts. Thus, in gen-
eration, the inflected word is not merely a bundle
of morphemes, but the completely correct word
form in accord with the morphophonological and
phonological rules of the language. By compos-
ing, in a particular order (specified in the grammar
of the language), the FSTs resulting from these
rewrite rules to the parsed forms, the result is a sin-
gle FST able to both generate and parse as shown
in Figure 1.

1https://elar.soas.ac.uk/Collection/MPI189644
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[VERB][TA][ANIMATE-OBJECT][AFFIRMATIVE]

[PRESENT][IC]noohow[1PL-EXCL-SUBJ][2SG-OBJ] 

lexc transducer

noohowen

morphophonological transducer

nonoohobeen

underlying representation
 with tags (parse)

intermediate representation

surface representation

noohow-een

nonoohob-een

Figure 1: An example of a parsed form with verb stem
and morphosyntactic tags (top left) and inflected sur-
face form (bottom left) for the Arapaho FST. The in-
termediate underlying phonological forms (middle left)
are accessible to the FST before/after applying mor-
phophonological alternations.

4 Training the LSTM

Although an extensive finite state morphological
analyzer is an extremely useful resource, neural
models are much better able to analyze to un-
seen forms than finite state machines are. How-
ever, neural models are hampered in low-resource
contexts by their data greediness. In order to
see whether this limitation could be addressed we
simulated training a neural model in low-resource
contexts using output from the Arapaho FST.
Since the currently strongest performing mod-
els for morphological inflection (Cotterell et al.,
2017; Kann and Schütze, 2016; Makarov et al.,
2017) use an LSTM-based sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014), we fol-
low this design in our work. We implement the
seq2seq model with OpenNMT’s (Klein et al.,
2018) default parameters of 2 layers for both the
encoder and decoder, a hidden size of 500 for the
recurrent unit, and a maximum batch size of 64.

Training corpora of various sizes are created
by randomly selecting examples of inflected word
forms and their corresponding intermediate and
parsed forms from the bidirectional output of the
Arapaho FST. This results in triplets like in Fig-
ure 1. The triplets are arranged into three pairs—
inflected “surface” forms (SF) & intermediate
forms (IF), IF & parsed forms (PF), and SF & PF.
Re-using the pairs for both parsing and generation
gives six data sets. For simplicity’s sake, since the
primary aim is to compare the two strategies’ per-
formance and not to measure accuracy, forms with
ambiguous inflected forms, parses, or intermediate
forms were filtered. Other experiments (Moeller
et al., 2018) indicate that pre-processing the data
to account for ambiguous forms would not greatly

affect accuracy.
We treat the intermediate strategy of parsing

as a translation task of input character sequences
from the fully-inflected surface forms to an output
of character sequences of the intermediate forms,
and then from the intermediate forms to a se-
quence of morphosyntactic tags plus the character
sequences of the verbal root. Generation follows
the same model in the opposite direction.

Figure 2: An example from training/test sets. In pars-
ing, surface forms (SF) predict intermediate forms (IF).
The output trains another encoder-decoder to predict
parsed forms (PF). Generation follows the same steps
but proceeding from the PF instead.

The selected data is divided roughly in half.
The first half serves as training and development
and the second half as testing data in the first
step of the intermediate training strategy (SF⇔IF
or PF⇔IF). In order to compare the two train-
ing strategies, the output of this intermediate step
trains and tests the second step of the intermedi-
ate strategy. The original second half also serves
to train and test the direct strategy (SF-PF or PF-
SF). Symbol prediction degrades at the end of a se-
quence. Best results are achieved when each char-
acter/tag sequence is doubled on its line for train-
ing and testing (Moeller et al., 2018) and trimmed
for evaluation. So, for example, nonoohobeen be-
comes nonoohobeennonoohobeen during training
and testing but predicted symbols that exceed the
length of the original string are deleted and the first
half of the predicted string is evaluated against the
original string.

5 Experiment and Results

We compare two strategies to train a neural model
to generate inflected verbs from morphosyntac-
tic tags with verb stem or to parse inflected verb
forms. First, we train the neural model to learn
correct output forms directly from the parsed or
inflected input. Second, we added an intermediate
step where the model first learns the mapping to
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intermediate forms and, from there, the mapping
to the correct parsed or inflected form. We mea-
sure the final accuracy score and the average Lev-
enshtein distance and compare the performance of
the two strategies in generation and in parsing. Ac-
curacy is measured as the fraction of correct gener-
ated/parsed forms in the output compared to com-
plete gold inflected or parsed forms.

5.1 Generation
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Figure 3: Generation - accuracy scores
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Figure 4: Generation - average Levenshtein distances

We trained a bidirectional LSTM encoder-
decoder with attention (Bahdanau et al., 2015) to
generate Arapaho verbs using five training sets
with approximately 14.5, 18, 27, 31.5, and 36
thousand examples. The direct strategy trains on
the morphosyntactic tags and verb stem. Each tag
occurs in the same order as its corresponding mor-
pheme appears in the intermediate form. Only

“direction-of-action” tags/morphemes come after
the stem.

The accuracy scores in Figure 3 and the Lev-
enshtein distance measures in 4 show that the in-
termediate strategy performs better than the direct
strategy in low-resource settings. Starting at about
14,500 training examples, where the direct strat-
egy produces barely any inflected forms (SF) cor-
rectly, the intermediate strategy achieves nearly
69% accuracy. As the training size approaches
36,000, the advantage of the intermediate step is
lost. Indeed, the intermediate strategy begins to
perform worse while the direct strategy continues
to improve. The intermediate strategy seems to
peak at 30,000 training examples.

5.2 Parsing
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Figure 5: Parsing - accuracy scores
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Figure 6: Parsing - average Levenshtein distances

The parsing trend is less clear when compared
to morphological generation. We compare seven
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training sets of approximately 10, 14.5, 18, 31.5,
36, and 45 thousand examples. As in morpholog-
ical generation, at the lowest data settings the in-
termediate learning strategy is preferable to the di-
rect strategy, though it has a less dramatic perfor-
mance difference. The accuracy scores in Figure
5 show that with 14,000 training examples, the in-
termediate strategy performs only about 10 points
higher. The advantage of the intermediate strategy
is less noticeable in parsing, nor does its advan-
tage decrease as quickly. With 36,000 examples
barely one point separates the two strategies and
the intermediate strategy performs slightly better.
The intermediate strategy performance does not
begin to reduce until 45,000 examples. The av-
erage Levenshtein distances in Figure 6, however,
show that the direct strategy improves more con-
sistently, though it is still only slightly better as
training size increases.

5.3 Discussion

An end-to-end neural model demands quite a bit of
data in order to learn patterns. It appears that, for
languages with complicated morphophonological
alternations, if an intermediate model is trained
on a simple concatenation of morphemes, these
disadvantages may be counterbalanced. The mor-
pheme substrings in the intermediate forms corre-
spond predictably to morphosyntactic tags in the
parsed form. Subsequent alternations are less pre-
dictable. This may explain the intermediate strat-
egy’s difference in performance between parsing
and generation. A pipelined approach with inter-
mediate training is generally not preferable to end-
to-end training. The intermediate step inevitably
introduces errors into the training of the second
neural model. The intermediate strategy’s perfor-
mance degradation beyond 35 or 40 thousand ex-
amples might indicate that the errors become too
dominant.

Comparing our results to the recent CoNLL-
SIGMORPHON shared tasks (Cotterell et al.,
2016, 2017, 2018), it is surprising that the Arapaho
direct generation results at 10,000 examples are so
low. However, polysynthetic languages are rare in
the shared task—only one, Navajo, was available
in 2016 and 2017–making it difficult to compare
results on such complicated and varied morpholo-
gies. In addition, our data included phenomena
which could be considered derivational, such as
verbal stems signaling animacy and modality (cf.

Sect. 2). Also, since the data was selected ran-
domly from the full FST output, the neural model
may simply have not seen enough repeated stems
in the low settings. Our results are not very good
at the lowest settings but, in future, more in-depth
pre-processing and filtering of the data could im-
prove overall performance.

The varying results from morphological parsing
shown in Figures 5 and 6 demonstrate the prelim-
inary nature of this study. The trend between the
two strategies seems indicative but several more
comparisons should be conducted on similar lan-
guages. We hope to conduct a similar study on
other low-resource languages for which an FST
exists in order to determine whether the trend will
reappear.

6 Conclusion

A sweet spot exists between 10,000 and 30,000
randomly selected training examples of Arapaho
verbs where better results are achieved in mor-
phological generation by first training an encoder-
decoder to produce the intermediate forms from an
FST than by learning the inflected or parsed form
directly. For generation, the intermediate strategy
achieves the strongest results around 30,000 exam-
ples. The results of morphological parsing vary,
with the intermediate strategy outperforming the
direct strategy at very low settings but achieving
similar results with 18,000 and 36,000 training ex-
amples. Overall, the intermediate strategy appears
to produce reliably better results at low-resource
settings than the direct strategy.
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Abstract

Morphological analysis is a critical enabling
technology for polysynthetic languages. We
present a neural morphological analyzer for
case-inflected nouns in St. Lawrence Island
Yupik, an endangered polysythetic language
in the Inuit-Yupik language family, treating
morphological analysis as a recurrent neural
sequence-to-sequence task. By utilizing an
existing finite-state morphological analyzer to
create training data, we improve analysis cov-
erage on attested Yupik word types from ap-
proximately 75% for the existing finite-state
analyzer to 100% for the neural analyzer. At
the same time, we achieve a substantially
higher level of accuracy on a held-out testing
set, from 78.9% accuracy for the finite-state
analyzer to 92.2% accuracy for our neural an-
alyzer.

1 Introduction

St. Lawrence Island Yupik, henceforth Yupik, is
an endangered polysynthetic language spoken on
St. Lawrence Island, Alaska and the Chukotka
Peninsula of Russia. Members of the Yupik com-
munity on St. Lawrence Island have expressed in-
terest in language revitalization and conservation.

Recent work by Chen and Schwartz (2018) re-
sulted in a finite-state morphological analyzer for
Yupik implemented in foma (Hulden, 2009). That
analyzer implements the grammatical and mor-
phophonological rules documented in A Practical
Grammar of the St. Lawrence Island / Siberian
Yupik Eskimo Language (Jacobson, 2001).

In this work, we test the coverage of the finite-
state analyzer against a corpus of digitized Yupik
texts and find that the analyzer fails to return any
analysis for approximately 25% of word types (see
§2 and Table 1). We present a higher-coverage
neural morphological analyzer for case-inflected
Yupik nouns that involve no derivational mor-

phology, using the previously-developed finite-
state analyzer to generate large amounts of labeled
training data (§3). We evaluate the performance of
the finite-state and neural analyzers, and find that
the neural analyzer results in higher coverage and
higher accuracy (§5), even when the finite-state
analyzer is augmented with a guessing module to
hypothesize analyzes for out-of-vocabulary words
(§4). We thus find that a robust high-accuracy
morphological analyzer can be successfully boot-
strapped from an existing lower-coverage finite-
state morphological analyzer (§6), a result which
has implications for the development of language
technologies for Yupik and other morphologically-
rich languages.

2 Evaluation of the FST Analyzer

The finite-state morphological analyzer of Chen
and Schwartz (2018) implements the grammat-
ical and morphophonological rules documented
in A Practical Grammar of the St. Lawrence Is-
land / Siberian Yupik Eskimo Language (Jacobson,
2001) using the foma finite-state toolkit (Hulden,
2009).

In order to evaluate the percentage of attested
Yupik word forms for which the finite-state an-
alyzer produces any analysis, we began by digi-
tizing several hundred Yupik sentences presented
in Jacobson (2001) as examples to be translated
by the reader. We next assembled, digitized, and
manually validated seven texts that each consist
of a collection of Yupik stories along with cor-
responding English translations. The texts in-
clude four anthologies of Yupik stories, legends,
and folk tales, along with three leveled elementary
primers prepared by the Bering Strait School Dis-
trict in the 1990s (Apassingok et al., 1993, 1994,
1995). Of the four anthologies, three comprise a
trilogy known as The Lore of St. Lawrence Is-
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Text % Coverage Corpus size
Tokens; Types (in words)

Ref 98.24 97.87 795
SLI1 79.10 70.62 6859
SLI2 77.14 68.87 11,926
SLI3 76.98 68.32 12,982
Ungi 84.08 73.45 15,766
Lvl1 76.64 70.86 4357
Lvl2 75.42 72.62 5358
Lvl3 77.71 75.19 5731

Table 1: For each Yupik text, the percentage of types
and tokens for which the Yupik finite-state analyzer of
Chen and Schwartz (2018) returns an analysis, along
with the total number of tokens per text. Ref refers
to Yupik examples taken from the Jacobson (2001)
reference grammar, SLI1 - SLI3 refer to the Lore of
St. Lawrence Island, volumes 1-3 (Apassingok et al.,
1985, 1987, 1989), Ungi is an abbreviation for Ungi-
paghaghlanga (Koonooka, 2003), and Lvl1 - Lvl3 re-
fer to the elementary Yupik primers (Apassingok et al.,
1993, 1994, 1995).

land (Apassingok et al., 1985, 1987, 1989), while
the last is a stand-alone text, Ungipaghaghlanga
(Koonooka, 2003; Menovshchikov, 1988). To-
gether, these texts represent the largest known col-
lection of written Yupik.

After digitizing each text, we analyzed each
Yupik word in that text using the finite-state mor-
phological analyzer. We then calculated the per-
centage of tokens from each text for which the
finite-state analyzer produced at least one analy-
sis. We call this number coverage, and report this
result for each text in Table 1. The mean coverage
over the entire set of texts was 77.56%. The neu-
ral morphological analyzer described in the sub-
sequent section was developed in large part to
provide morphological analyses for the remaining
22.44% of heretofore unanalyzed Yupik tokens.

.

3 Yupik Morphological Analysis as
Machine Translation

The task of morphological analysis can be re-
garded as a machine translation (sequence-to-
sequence) problem, where an input sequence that
consists of characters or graphemes in the source
language (surface form) is mapped to an output
sequence that consists of characters or graphemes
and inflectional tags (underlying form). For exam-
ple, in English, the sequence of characters repre-

senting the surface word form foxes can be trans-
formed into a sequence of characters representing
the root word fox and the inflectional tag indicat-
ing plurality:

f o x e s
↓

f o x [PL]

In contrast to English, Yupik is highly productive
with respect to derivational and inflectional mor-
phology.1 See §3.1.1 for noun inflection tags.

(1) kaviighet
kaviigh- -∼sf-w:(e)t
fox- -ABS.UNPD.PL

‘foxes’

But in much the same way, (1) can be rewrit-
ten as a translation process from an input sequence
of graphemes that represent the surface form to
an output sequence of graphemes and inflectional
tags that represent the underlying form:

k a v i i gh e t
↓

k a v i i gh [ABS] [UNPD] [PL]

3.1 Generating Data from an FST
Very little Yupik data has previously been manu-
ally annotated in the form of interlinear glosses.
On the other hand, the finite-state morphological
analyzer of Chen and Schwartz (2018) is capable
of generating Yupik surface forms from provided
underlying forms, and vice versa. In the following
sections, bracketed items [..] introduce the inflec-
tional tags that are used in the underlying forms of
the finite-state analyzer.

3.1.1 Basic Yupik Nouns
Yupik nouns inflect for one of seven grammatical
cases:

1. ablative-modalis [ABL MOD]
2. absolutive [ABS]
3. equalis [EQU]
4. localis [LOC]
5. terminalis [TER]
6. vialis [VIA]
7. relative [REL]

1Each derivational and inflectional suffix is associated
with a series of morphophonological rules. Each rule is rep-
resented by a unique symbol such as – or ∼sf as introduced in
Jacobson (2001). This convention is used in the Yupik gram-
mar, in the Yupik-English dictionary (Badten et al., 2008),
and by Chen and Schwartz (2018). We therefore follow this
convention, employing these symbols in our glosses here. See
Table 2 on the following page for more details.
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Symbol Description
∼ Drops e in penultimate (semi-final)

position or e in root-final position
and hops it

e-Hopping is the process by which
vowels i, a, or u in the first syllable
of the root are lengthened as a re-
sult of dropping semi-final or final-
e, so termed because it is as if the
e has “hopped” into the first syllable
and assimilated. e-Hopping will not
occur if doing so results in a three-
consonant cluster within the word or
a two-consonant cluster at the begin-
ning (Jacobson, 2001).

∼f Drops final e and hops it
∼sf Drops semi-final e and hops it
-w Drops weak final consonants, that

is, gh that is not marked with an *.
Strong gh is denoted gh*

: Drops uvulars that appear between
single vowels

– Drops final consonants
–– Drops final consonants and preced-

ing vowel
@ Indicates some degree of modifica-

tion to root-final te, the degree of
which is dependent on the suffix

+ Indicates no morphophonology oc-
curs during affixation. This sym-
bol is implicitly assumed if no other
symbols are present.

Table 2: List of documented morphophonological rules
in Yupik and their lexicalized symbols. For more de-
tails see Jacobson (2001) and Badten et al. (2008).

Nouns then remain unpossessed [UNPD] and in-
flect for number (singular [SG], plural [PL], or
dual [DU]), or inflect as possessed nouns. Pos-
sessed nouns are marked for number, and for the
person and number of the possessor. For example,
[1SGPOSS][SGPOSD] marks a possessed singular
noun with a first person singular possessor.

The Badten et al. (2008) Yupik-English dic-
tionary lists 3873 noun roots, and the Jacobson
(2001) reference grammar lists 273 nominal in-
flectional suffixes. We deterministically generated
data by exhaustively pairing every Yupik noun
root with every inflectional suffix (ignoring any se-
mantic infelicity that may result). As shown in Ta-

Root Case Poss Posd Total
3873 × 7 × 1 × 3 = 81,333
3873 × 7 × 12 × 3 = 975,996

1,057,329

Table 3: Extracted training data. The first row counts
the total number of unpossessed nouns which are
marked for number: [SG], [PL], [DU]. The second row
counts the total number of possessed nouns which are
marked for number and also for 12 differing types of
possessors, which themselves are marked for person,
[1-4], and number, [SG], [PL], [DU].

ble 3 above, the underlying forms that result from
these pairings map to just over 1 million inflected
Yupik word forms or surface forms. Note that
these word forms represent morphologically licit
forms, but not all are attested. Even so, we did not
exclude unattested forms nor weight them accord-
ing to plausibility, since we lack sufficient docu-
mentation to distinguish the valid forms from the
semantically illicit ones. This parallel dataset of
inflected Yupik nouns and their underlying forms
represents our corpus.

3.1.2 Identified Flaw in Existing Yupik FST
While generating data using the finite-state ana-
lyzer, we observed a minor bug. Specifically, the
finite-state analyzer fails to account for the allo-
morphy that is triggered on some noun roots when
they are inflected for a subset of the 3rd person pos-
sessor forms (root-final -e surfaces as -a).

(2) neqangit
neqe- -∼:(ng)it
food- -ABS.PL.3PLPOSS

‘their foods’

As shown in (2), the correct surface form for
neqe[ABS][PL][3PLPOSS] is neqangit, but the
analyzer incorrectly generates neqngit instead.
Due to time constraints and the relatively small es-
timated impact, we did not modify the analyzer to
correct this bug. Though this impacts the training
data, having previously evaluated the analyzer, we
do not believe this error to be egregious enough to
compromise the generated dataset.

3.1.3 Yupik Verbs and Derivational Suffixes
While our training set for this work is the set of
inflected Yupik nouns described in §3.1.1, it is
important to note that this process could in prin-
ciple be used to generate a much larger training
set. The Badten et al. (2008) Yupik-English dic-
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Sequence Type Tokenize by Character Tokenize by Grapheme
surface form q i k m i q q i k mm i q

underlying form q i k m i gh [N] [ABS] [UNPD] [SG] q i k mm i gh [N] [ABS] [UNPD] [SG]

Table 4: Contrasts the two tokenization methods introduced in § 3.2.1 (tokenization by character and tokeniza-
tion by orthographically transparent Yupik grapheme) on the surface form qikmiq (dog) and its underlying form
qikmigh[N][ABS][UNPD][SG].

Possible Possible
# Nouns Verbs Both
0 1.06× 1006 8.80× 1006 9.86× 1006

1 1.37× 1008 2.04× 1009 2.18× 1009

2 2.22× 1010 4.19× 1011 4.41× 1011

3 4.03× 1012 8.31× 1013 8.72× 1013

4 7.66× 1014 1.63× 1016 1.71× 1016

5 1.48× 1017 3.18× 1018 3.33× 1018

6 2.88× 1019 6.21× 1020 6.50× 1020

7 5.61× 1021 1.21× 1023 1.27× 1023

Table 5: Number of morphotactically possible Yupik
word forms formed using 0-7 derivational suffixes.

tionary and Jacobson (2001) Yupik grammar also
list 3762 verb roots along with 180 intransitive and
2160 transitive verbal inflectional morphemes. If
one were to naively assume that every Yupik verb
can be either transitive or intransitive,2 another
8.8 million training examples consisting of Yupik
verbs could be generated.

Yupik also exhibits extensive derivational mor-
phology. The dictionary lists 89 derivational suf-
fixes that can each attach to a noun root and yield
another noun, 58 derivational suffixes that can
each attach to a noun root and yield a verb, 172
derivational suffixes that can each attach to a verb
root and yield another verb, and 42 derivational
suffixes that can each attach to a verb root and
yield a noun. Yupik words containing up to seven
derivational morphemes have been attested in the
literature (de Reuse, 1994). By considering all
possible Yupik nouns and verbs with up to seven
derivational morphemes, well over 1.2 × 1023 in-
flected Yupik word forms could be generated as
shown in Table 5 above. As before, many of these
forms, while morphologically valid, would be syn-
tactically or semantically illicit.

3.2 Neural Machine Translation
In this work, we made use of Marian (Junczys-
Dowmunt et al., 2018), an open-source neural ma-

2The Yupik-English dictionary does not annotate verb
roots with valence information.

chine translation framework that supports bidi-
rectional recurrent encoder-decoder models with
attention (Schuster and Paliwal, 1997; Bahdanau
et al., 2014). In our experiments using Marian,
we trained neural networks capable of translating
from input sequences of characters or graphemes
(representing Yupik words) to output sequences
of characters or graphemes plus inflectional tags
(representing an underlying Yupik form).

3.2.1 Data
We began by preprocessing the data described in
§3.1.1 by tokenizing each Yupik surface form, ei-
ther by characters or by orthographically trans-
parent, redoubled graphemes. An example can
be seen in the transformation of the word kavi-
ighet at the beginning of §3, where each char-
acter and inflectional tag were separated by a
space. When tokenizing by redoubled graphemes,
orthographically non-transparent graphemes were
first replaced following the approach described in
Schwartz and Chen (2017) which ensures there is
only one way to tokenize a Yupik word form. This
approach undoes an orthographic convention that
shortens the spelling of words by exploiting the
following facts:

• Graphemic doubling conveys voicelessness
(g represents the voiced velar fricative while
gg represents the voiceless velar fricative)

• Consecutive consonants in Yupik typically
agree in voicing, with the exception of voice-
less consonants that follow nasals

Yupik orthography undoubles a voiceless
grapheme if it co-occurs with a second voiceless
grapheme, according to the following three
Undoubling Rules (Jacobson, 2001):

1. A fricative is undoubled next to a stop or one
of the voiceless fricatives where doubling is
not used to show voicelessness (f, s, wh, h).

2. A nasal is undoubled after a stop or one of
the voiceless fricatives where doubling is not
used to show voicelessness.
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3. A fricative or nasal is undoubled when it
comes after a fricative where doubling is used
to show voicelessness, except that if the sec-
ond fricative is ll then the first fricative is un-
doubled instead.

These two tokenization methods subsequently
produced two parallel corpora, whose training
pairs differed as seen in Table 4 on the previous
page. Nevertheless, the input data always corre-
sponded to Yupik surface forms, and the output
data corresponded to underlying forms. The par-
allel corpora were then randomly partitioned into
a training set, a validation set, and a test set in a
0.8/0.1/0.1 ratio.

3.2.2 Initial Experiment
Using Marian, we used the data tokenized by char-
acters and trained a shallow neural network model
that implemented an attentional encoder-decoder
model (Bahdanau et al., 2014) with early stopping
and holdout cross validation. We used the parame-
ters described in Sennrich et al. (2016), where the
encoder and decoder consisted of one hidden layer
each, of size 1024. Of the 109,395 items in the
final test set, this shallow neural model achieved
100% coverage and 59.67% accuracy on the test
set.

Error analysis revealed a substantial amount of
underspecification and surface form ambiguity as
a result of syncretism in the nominal paradigm. As
exemplified in (3a) and (3b), inflectional suffixes
in Yupik may share the same underlying phono-
logical form as well as the same morphophono-
logical rules associated with that suffix.

(3a) ayveghet
ayvegh- -∼sf-w:(e)t
walrus- -ABS.UNPD.PL

‘walruses’

(3b) ayveghet
ayvegh- -∼sf-w:(e)t
walrus- -REL.UNPD.PL

‘of walruses’

For example, any noun that is inflected
for the unpossessed absolutive plural,
[N][ABS][UNPD][PL], produces a word-form
that is identical to the form yielded when the noun
is inflected for the unpossessed relative plural,
[N][REL][UNPD][PL]. The generated parallel
data therefore includes the following two parallel

forms, both of which have the exact same surface
form. The first is the word in absolutive case:

a y v e g h e t
↓

a y v e g h [N] [ABS] [UNPD] [PL]

The second is the word in relative case:

a y v e g h e t
↓

a y v e g h [N] [REL] [UNPD] [PL]

Since these surface forms are only distinguish-
able through grammatical context, and our neu-
ral analyzer was not trained to consider context,
it was made to guess which underlying form to re-
turn, and as suggested by the low accuracy score
of 59.67%, the analyzer’s guesses were often in-
correct. We did not think it was proper to penal-
ize the analyzer for wrong answers in instances of
syncretism, and consequently implemented a post-
processing step to account for this phenomenon.

This step was performed after the initial calcu-
lation of the neural analyzer’s accuracy score, and
provided an estimated or adjusted accuracy score
that considered the syncretic forms equivalent. It
iterated through all outputs of the neural analyzer
that were initially flagged as incorrect for differing
from their test set counterparts. Using the finite-
state analyzer, the surface forms for each output
and its corresponding test set item were then gen-
erated to verify whether or not their surface forms
matched. If they matched, the neural analyzer’s
output was instead counted as correct (see Table 6
on the following page for examples). Assessed in
this way, the shallow model achieved an adjusted
accuracy score of 99.90%.

3.2.3 Data Revisited
Although the postprocessing step is sufficient to
demonstrate the true performance of the neural
analyzer, we attempted to resolve this ambiguity
issue with a more systematic approach. In their
development of a neural morphological analyzer
for Arapaho verbs, Moeller et al. (2018) conflated
tags that resulted in ambiguous surface forms into
a single, albeit less informative, tag, such as [3-
SUBJ], joined from [3SG-SUBJ] and [3PL-SUBJ].
We attempted to do the same for Yupik by col-
lapsing the tag set, but Yupik presents a some-
what more intricate ambiguity patterning. Syn-
cretic tags can differ in their case markings alone,
as in (3a) and (3b), but they can also differ across
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Neural Analyzer Output Surface Gold Standard Surface
anipa[N][ABS][UNPD][PL] anipat anipa[N][REL][UNPD][PL] anipat 3

wayani[N][LOC][UNPD][PL] wayani wayagh[N][LOC][UNPD][PL] wayani 3

suflu[N][LOC][UNPD][PL] sufluni suflugh[N][ABS][4SGPOSS][SGPOSD] sufluni 3

puume[N][LOC][UNPD][DU] pumegni puu[N][LOC][4DUPOSS][SGPOSD] puumegneng 7

Table 6: An illustration of the process of the post-processing step that was implemented to resolve surface form
ambiguity. If the output and its gold standard match in their surface forms, the output is then considered correct,
despite the mismatch in the underlying forms.

case, possessor type, and number, as seen in (4a)
and (4b).

(4a) neghsameng
neghsagh- -∼f-wmeng
seal- -ABL MOD.UNPD.SG
‘seal (as indefinite object); from seal’

(4b) neghsameng
neghsagh- -∼f-wmeng
seal- -REL.PL.4DUPOSS
‘their2 (reflexive) seals’

As a result, we could not conflate our tags in the
same way Moeller et al. (2018) did. Instead, for
each set of syncretic tags, one string of tags was
selected to represent all of the tags in the set,
such that [N][ABS][UNPD][PL] denoted both un-
possessed absolutive plural and unpossessed rela-
tive plural. The original 273 unique strings of tags
(7 cases × 13 possessor types × 3 number mark-
ers) were consequently reduced to 170 instead.

Having identified and reduced tag set ambigu-
ity, we retrained the shallow model but only man-
aged to achieved an unadjusted accuracy score
of 95.48%. Additional error analysis revealed
that some surface form ambiguity remained, but
among non-syncretic tags that could not be col-
lapsed. In other words, these tags generated iden-
tical surface forms for some nouns but not others.
This is shown in (5a) – (5d):

(5a) sufluni
suflu- -–ni
cave- -ABS.SG.4SGPOSS
‘his/her (reflexive) own cave’

(5b) sufluni
suflu- -∼f-wni
cave- -LOC.UNPD.PL
‘in the cave’

(5c) sufluni
suflug- -–ni
chimney- -ABS.SG.4SGPOSS
‘his/her (reflexive) own chimney’

(5d) suflugni
suflug- -∼f-wni
chimney- -LOC.UNPD.PL
‘in the chimney’

Thus, despite the identical surface forms shown
in (5a) and (5b), these same inflection tags do
not result in identical surface forms for the noun
root suflug in (5c) and (5d), since the underly-
ing inflectional suffixes they represent are dis-
tinct: –ni versus ∼f-wni. As such, these two
strings of tags, [N][ABS][4SGPOSS][SGPOSD]
and [N][LOC][UNPD][PL], cannot be collapsed.

Since the tag set cannot be reduced further than
170 tags, we must invoke the post-processing step
introduced in §3.2.2 regardless. Moreover, since
our proposed method results in some loss of in-
formation with respect to all possible underly-
ing forms, we will have to seek an alternative
method for handling syncretism. Nevertheless, af-
ter applying the post-processing step, the retrained
model also achieved an adjusted accuracy score of
99.90%.

3.2.4 Additional Experiments
We trained four models on the inflected nouns
dataset, experimenting with the shallow versus
deep neural network architectures and the two to-
kenization methods: by characters and by redou-
bled graphemes. The shallow neural models were
identical to those described in §3.2.2 and §3.2.3.
The deep neural models used four hidden layers
and LSTM cells, following Barone et al. (2017).
As before, all models were trained to convergence
and evaluated with holdout cross validation on the
same test set. Results are presented in Table 7 on
the next page, along with the accuracy scores be-
fore and after resolving all surface ambiguities.
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Figure 1: Finite-state diagram depicting legal word structure for nouns in Yupik. Here, V may refer to either a short
vowel, -i, -a, -u, -e, or a long vowel, -ii, -aa, -uu, and C refers to any consonantal Yupik grapheme. Additionally,
any noun-final C is restricted to be -g, -gh, -ghw, or -w.

Model Tokenization Accuracy Adjusted
shallow char 95.37 99.87
deep char 95.07 99.95
shallow redoubled 95.48 99.90
deep redoubled 95.17 99.96

Table 7: Accuracy and adjusted accuracy scores on the
generated test data from §3.2.1 (before and after resolv-
ing all surface ambiguity) for each model. The bolded
percentage indicates the highest-performing model on
the heldout test data.

While all models reached over 99% adjusted
accuracy, the deep models outperformed their
shallow counterparts, and the models trained on
data tokenized by redoubled graphemes fared
marginally better than those trained on data tok-
enized by individual characters. The latter may
result from the fact that some inflections operate
on full graphemes, for instance, gh#→ q# during
inflection for the unpossesed absolutive singular.
The percentage improvement is so slight, however,
that this may not be of much consequence. The
deep model trained on redoubled graphemes was
most accurate, peaking at 99.96%.

Despite comparable accuracy scores, there did
not appear to be a discernible pattern with respect
to errors among the four models.

4 Finite-State Guesser

We modified the finite-state analyzer of Chen and
Schwartz (2018) by implementing a guesser mod-
ule; this guesser permits the analyzer to hypoth-
esize possible roots not present in its lexicon that
nevertheless adhere to Yupik phonotactics and syl-
lable structure. Noun roots, for example, may only
end in a vowel, -g, -gh, -ghw, or -w, and follow the
structural pattern given by the regular expression
below:

(C) V (C) (C V (C))*

Thus, any guess made for a noun would adhere
to this patterning, which the finite-state diagram
in Figure 1 above captures visually. Moreover,
the guesser was implemented as a backoff mecha-
nism, such that it was only called if no other anal-
ysis could be determined. Guesses were also la-
beled with an additional tag, [GUESS], to distin-
guish them from the output returned by the finite-
state analyzer itself.

5 Comparing Neural vs. Finite-State
Analyzers

The final experimental condition involved compar-
ing and quantifying the performance of the neural
analyzer against its equivalent finite-state counter-
part. Because the test set used in §3 was generated
by the finite-state Yupik analyzer, it would be un-
fair to contrast the performance of the neural ana-
lyzer and the finite-state analyzer on this dataset,
as the finite-state analyzer would be guaranteed to
achieve 100% accuracy.

5.1 Blind Test Set

Instead, we made use of the nouns from a pub-
lished corpus of Yupik interlinear glosses as an un-
seen test set: Mrs. Della Waghiyi’s St. Lawrence
Island Yupik Texts With Grammatical Analysis by
Kayo Nagai (2001), a collection of 14 orally-
narrated short stories that were later transcribed,
annotated and glossed by hand. From these sto-
ries, we extracted all inflected nouns with no inter-
vening derivational suffixes to form a modest eval-
uation corpus of 360 words. This was then pared
down further to 349 words by removing 11 En-
glish borrowings that had been inflected for Yupik
nominal cases. Manual examination of the evalua-
tion corpus revealed several problematic items that
we believe represent typos or other errors. These
were removed from the final evaluation set.
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for types Coverage Accuracy
FST (No Guesser) 85.78 78.90
FST (w/Guesser) 100 84.86
Neural 100 92.20

for tokens Coverage Accuracy
FST (No Guesser) 85.96 79.82
FST (w/Guesser) 100 84.50
Neural 100 91.81

Table 8: Comparison of coverage and accuracy scores
on the blind test set (§5.1), contrasting the finite-state
and neural analyzers. Accuracy is calculated over all
types and tokens.

5.2 Blind Test Results

We analyzed the data from §5.1 using the origi-
nal finite-state analyzer, the finite-state analyzer
with guesser (§4), and the best-performing neu-
ral model from §3.2.4 (the deep model trained on
graphemes).

Accuracy scores for the neural and finite-state
analyzers, when evaluated on this refined corpus,
are reported for types and tokens in Table 8 above,
where accuracy was calculated over the total num-
ber of types and tokens, respectively. On the blind
test set, the neural analyzer achieved coverage of
100% and accuracy of over 90%, outperforming
both finite-state analyzers.

6 Discussion

Of the two analyzers which manage to achieve
maximum coverage by outputting a parse for each
item encountered, the neural analyzer consistently
outperforms the finite-state analyzer, even when
the finite-state analyzer is supplemented with a
guesser. Furthermore, as illustrated in Tables 9
and 10, the neural analyzer is also more adept at
generalizing.

6.1 Capacity to Posit OOV Roots

Out-of-vocabulary (OOV) roots are those roots
that appear in the evaluation corpus extracted from
Nagai and Waghiyi (2001) that do not appear in
the lexicon of the finite-state analyzer nor in the
Badten et al. (2008) Yupik-English dictionary. Of
the seven unattested roots identified in the corpus,
the neural analyzer returned a correct morpholog-
ical parse for three of them while the finite-state
analyzer only returned two (see Table 9).

Unattested Root FST NN
aghnasinghagh – –
aghveghniigh – 3

akughvigagh 3 3

qikmiraagh – –
sakara 3 –
sanaghte – –
tangiqagh – 3

Table 9: Comparison of finite-state and neural ana-
lyzer’s performances on unattested roots, which are un-
accounted for in both the lexicon of the finite-state an-
alyzer and the Badten et al. (2008) Yupik-English dic-
tionary. A checkmark indicates that the correct mor-
phological analysis was returned by that analyzer.

6.2 Capacity to Handle Spelling Variation

The neural analyzer performed even better with
spelling variation in Yupik roots (see Table 10).
Of the three spelling variants identified in the cor-
pus, all of them differed from their attested forms
with respect to a single vowel, -i- versus -ii-. The
neural analyzer returned the correct morphologi-
cal parse for all spelling variants, while the finite-
state analyzer supplemented with the guesser only
succeeded with one, melqighagh. Moreover, the
neural analyzer even managed to guess at the cor-
rect underlying root in spite of a typo in one of the
surface forms (ukusumun rather than uksumun).

Root Variant FST NN
melqighagh 3 3

piitesiighagh – 3

uqfiilleghagh – 3

*ukusumun – 3

Table 10: Comparison of finite-state and neural an-
alyzer’s performances on root variants, which are
spelled differently from their attested counterparts in
the lexicon of the finite-state analyzer and Badten et al.
(2008). A checkmark implies that the analyzer returned
the correct morphological analysis while the asterisk *
denotes an item with a typo.

6.3 Implications for Linguistic Fieldwork

The higher-quality performance of the neural ana-
lyzer has immediate implications for future com-
putational endeavors and field linguists working in
Yupik language documentation and longer-range
implications for field linguists in general. With
respect to fieldwork, a better-performing analyzer
with greater and more precise coverage equates
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to better real-time processing of data for field lin-
guists performing morphological analysis and in-
terlinear glossing.

The neural analyzer is also immune to overgen-
eration, since it relies on a machine translation
framework that returns the “best” translation for
every input sequence; in our case, this equates
to one morphological analysis for each surface
form. This contrasts with the finite-state analyzer
variants that may return hundreds or thousands of
analyses for a single surface form if the finite-state
network permits. For instance, it was found that
within the text corpus of the Jacobson (2001) ref-
erence grammar alone (see Table 1), the Yupik
finite-state analyzer (without guesser) generated
over 100 analyses for each of 16 word types. The
word with the greatest number of analyses, laa-
lighfiknaqaqa, received 6823 analyses followed
by laalighfikiikut with 1074 (Chen and Schwartz,
2018). In this way, to have developed a neural an-
alyzer that returns one morphological analysis per
surface form is valuable to field linguists as it does
not require them to sift through an indiscriminate
number of possibilities.

6.4 Application to Other Languages
Aside from our procedure to tokenize Yupik words
into sequences of fully transparent graphemes,
exceedingly little language-specific preprocessing
was performed. Our general procedure consists of
creating a parallel corpus of surface and underly-
ing forms by iterating through possible underlying
forms and using a morphological finite-state trans-
ducer to generate the corresponding surface forms.
We believe that this procedure of bootstrapping a
learned morphological analyzer through the lens
of machine translation should be generally appli-
cable to other languages (especially, but certainly
not exclusively, those of similar typology).

6.5 Added Value of FST Analyzers
Finally, the methodology employed here, in which
a neural analyzer is trained with data generated
from an existing finite-state implementation, is in-
herently valuable. Though the development of
finite-state morphological analyzers demands con-
siderable effort, the fact that their output may be
leveraged in the development of better-performing
systems is especially practical for under-resourced
languages such as Yupik, where any form of train-
ing data is scarce. Thus, finite-state analyzers may
serve a twofold purpose: that of morphological

analysis, as they were intended to be used, but also
for the generation of training data to train neural
systems.

7 Conclusion

Morphological analysis is a critical enabling
technology for polysynthetic languages such as
St. Lawrence Island Yupik. In this work we have
shown that the task of learning a robust high-
accuracy morphological analyzer can be boot-
strapped from an existing finite-state analyzer.
Specifically, we have shown how this can be done
by framing the problem as a machine translation
task. We have successfully trained a neural mor-
phological analyzer for derivationally unaffixed
nouns in St. Lawrence Island Yupik, and compared
its performance with that of its existing finite-state
equivalent with respect to accuracy.

This work represents a case where the student
truly learns to outperform its teacher. The neu-
ral analyzer produces analyses for all Yupik word
types it is presented with, a feat that the original
finite-state system fails to achieve. At the same
time, the neural analyzer achieves higher accuracy
than either the original finite-state analyzer or a
variant FST augmented with a guesser. The neural
analyzer is capable of correctly positing roots for
out-of-vocabulary words. Finally, the neural ana-
lyzer is capable of correctly handling variation in
spelling.

In future work, we plan to explore more thor-
ough methods for handling ambiguous surface
forms. We also plan to correct the minor FST error
identified in §3.1.2. Most importantly, the training
dataset will be extended to include items beyond
inflected nouns with no intervening derivational
suffixes. Specifically, we intend to increase the
training set to include verbs, particles, and demon-
stratives in addition to nouns, as well as words that
include derivational suffixes.
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